Project Icon

ACCOUNT-OWNERSHIP

结合对比学习和Logistic回归的高效文本分类模型

SetFit模型通过对比学习和Logistic回归,实现精准的文本分类,该模型微调Sentence Transformer以获取特征。无需复杂提示和大规模数据,适用于多样文本分类任务,并可在自有数据集上方便微调。

happy-transformer - 便捷调优与推理NLP Transformer模型
GithubHappy TransformerNLP开源项目文本分类文本生成词预测
Happy Transformer提供简单的方法来调优和推理NLP Transformer模型,主要功能包括DeepSpeed训练、Apple的MPS训练及推理、WandB训练追踪以及直接推送模型到Hugging Face的Model Hub。支持的任务涵盖文本生成、文本分类、单词预测、问答、文本到文本、下一句预测和标记分类。
contextualized-topic-models - 多语言支持的上下文话题模型工具,适用于零样本学习
BERTCombinedTMContextualized Topic ModelsGithubSBERTZeroShotTM开源项目
提供先进的上下文字话题模型工具,支持BERT等预训练语言模型,适用于多语言和零样本学习。CTM包含CombinedTM和ZeroShotTM两大主要模型,能适应不同任务需求。通过结合上下文嵌入和词袋模型,CTM能够生成更具连贯性的主题。项目还提供Kitty子模块用于人机交互文档分类,并附有详细教程和文档,帮助用户快速上手,提升话题建模效果。
transformers-tutorials - Transformers模型在自然语言处理中的应用教程
BERTGithubHugging FaceNLPPyTorchTransformers开源项目
本项目提供了关于如何使用Transformers模型在自然语言处理任务中进行精细调优的详细教程,包括文本分类、情感分析、命名实体识别和摘要生成等案例。教程旨在帮助用户掌握应用最新NLP技术的技巧,并提供配套的Python代码示例和工具指南。
sentiment-analysis - 多种中文情感分析方法及实现途径
GithubSentiment Analysis开源项目情感分析文本分类深度学习自然语言处理
该页面介绍了中文情感分析的三种类型:基于情感词典、传统机器学习和深度学习的方法,并展示了四种实现方式:词典法、Bayes法、ALBERT与TextCNN结合及其emoji扩展。适合自然语言处理和文本分类爱好者深入了解情感分析的实现手段。
custom-diffusion - 文本到图像扩散模型微调方法
Custom DiffusionGithubStable Diffusion图像生成多概念定制开源项目文本到图像扩散模型
该项目提供了一种高效的文本到图像扩散模型微调方法。只需调整部分模型参数,即可在短时间内完成训练,并减少存储需求。项目还支持多概念组合,附带新数据集和完整的训练步骤。适用于多种类别和应用场景。
delft - 基于Keras和TensorFlow的深度学习文本处理框架
DeLFTGithubKerasTensorFlow开源项目文本处理深度学习
DeLFT是一个Keras和TensorFlow框架,专为序列标注(如命名实体识别、信息提取)和文本分类(如评论分类)优化。它重新实现了许多前沿深度学习模型,支持处理富文本格式和多种现代NLP架构,旨在提供高效、可靠且可集成的生产级应用。该框架包括各种分类器和评估标准,并支持多GPU训练和推理。
Multimodal-Toolkit - 通用多模态数据与文本特征融合工具包
GithubHuggingFace TransformersMultimodal TransformersPython分类任务回归任务开源项目
一个用于分类和回归任务的工具包,结合HuggingFace Transformers的文本特征与表格数据,生成多模态特征以提高模型性能。该工具包支持多种模型和组合方法,提供详尽的示例和数据集,包括BERT、ALBERT等模型,以及电商评论、Airbnb数据和宠物领养预测等实际应用。
t-few - 参数高效微调方法优于GPT-3上下文学习
GithubT-Few参数高效微调少样本学习开源项目自然语言处理预训练语言模型
t-few项目提出一种少样本参数高效微调方法,在多个NLP任务中表现优于GPT-3的上下文学习。项目开源代码包含环境配置、实验运行等功能,并在RAFT基准测试中达到领先水平。这为NLP领域少样本学习提供了高效且低成本的解决方案,研究人员可基于此进行深入研究。
sentence-transformers - 多语言文本和图像嵌入向量生成框架
GithubSentence Transformers向量表示开源项目深度学习自然语言处理预训练模型
sentence-transformers是一个基于transformer网络的框架,用于生成句子、段落和图像的向量表示。该项目提供了多语言预训练模型,支持自定义训练,适用于语义搜索、相似度计算、聚类等场景。这个开源工具在自然语言处理和计算机视觉任务中表现出色,为研究人员和开发者提供了便捷的嵌入向量生成方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号