Project Icon

ACCOUNT-OWNERSHIP

结合对比学习和Logistic回归的高效文本分类模型

SetFit模型通过对比学习和Logistic回归,实现精准的文本分类,该模型微调Sentence Transformer以获取特征。无需复杂提示和大规模数据,适用于多样文本分类任务,并可在自有数据集上方便微调。

amd-partial-v1 - SetFit文本分类模型的高效少样本学习
GithubHuggingfaceSetFit句子转换器对比学习开源项目文本分类模型高效少样本学习
SetFit结合sentence-transformers/paraphrase-mpnet-base-v2,实现高效的文本分类,使用对比学习和LogisticRegression,总体准确率达96.7%。该模型经过优化学习率和损失函数,适用于多种文本分析场景。
amd-partial-phonetree-v1 - 融合句子转换器和对比学习的高效文本分类模型
GithubHuggingfaceLogistic回归SetFit句子嵌入少样本学习开源项目文本分类模型
SetFit模型结合sentence-transformers/paraphrase-mpnet-base-v2,通过高效的少样本学习实现文本分类。模型采用对比学习微调句子转换器和训练LogisticRegression分类头,具有优异的分类性能。支持最大512标记长度,适用于电话语音邮件和电话树分类需求。模型适合需要高效文本分类的研发人员和数据科学家使用。
amd-full-phonetree-v1 - 提高文本分类效率的少样本学习模型
GithubHuggingfaceLogistic回归SetFit句子变压器对比学习开源项目文本分类模型
SetFit模型利用sentence-transformers/paraphrase-mpnet-base-v2进行句子嵌入,通过对比学习优化,实现少样本学习效率。结合LogisticRegression进行文本分类,可处理最长512词元的序列,支持两类分类,适用于需要精确文本分类的场景,可通过SetFit库轻松使用。
INVOICE-DISPUTE - SetFit模型高效应用于文本分类的少样本学习方法
GithubHuggingfaceLogisticRegressionSetFit句子变换器对比学习开源项目文本分类模型
本项目介绍了SetFit模型在文本分类任务中的应用,利用高效的少样本学习技术,通过对Sentence Transformer进行对比学习微调,并使用微调后的特征训练Logistic Regression分类头,实现文本分类。SetFit模型支持最大512个令牌的序列长度,适用于二分类任务。通过SetFit库,用户可以便捷地安装并使用该模型进行推理,更多信息可在GitHub和相关论文中查阅。
setfit - SetFit高效小样本学习框架,支持多语言文本分类
GithubHugging Face HubSetFit多语言支持少量标签数据开源项目无需提示
SetFit是一种高效且无需提示的小样本微调框架,利用Sentence Transformers实现高准确度的小样本学习。不需要手工制作提示或语言模型转换器,直接从文本示例生成丰富嵌入,大大提高训练速度。在仅有少量标记数据的情况下,SetFit的精度可与大型模型相媲美。例如,针对客户评论情感数据集,仅使用每类8个标记样本就能达到RoBERTa Large的全量训练精度。支持多语言文本分类,兼容Hugging Face Hub,训练和推理过程简单直观,是一个高效实用的选择。
botpress_Vaganet_new_model - 高效的少样本学习技术提升多语言文本分类精度
GithubHuggingfaceLogistic回归SetFit句子转换器对比学习开源项目文本分类模型
SetFit模型结合sentence-transformers的微调与LogisticRegression,实现88.97%的文本分类准确率,支持在多语言环境下进行34类文本分类,具备少样本学习能力,是资源有限条件下的高效选择。
amd-power-dialer-v1 - 少样本高效文本分类模型概览
GithubHuggingfaceSetFit句子转换器对比学习少样本学习开源项目文本分类模型
了解利用SetFit和Sentence Transformer进行少样本高效文本分类的方式,该模型微调Sentence Transformer并用其特征进行分类头训练。用户可通过简单安装与代码示例快捷进行推理,显著优化文本分类任务。
answer-classification-setfit-v2-binary - SetFit少样本学习文本分类模型,适用于多领域
GithubHuggingfaceSetFit句子转换器对比学习少样本学习开源项目文本分类模型
项目运用了SetFit框架,实现在BAAI/bge-base-en-v1.5基础上的少样本学习文本分类,结合对比学习和Logistic Regression算法,提升了文本分类的精准度。模型适用于广泛领域,支持长至512个token的文本分类,易于通过SetFit库安装使用,设计理念基于“无提示高效少样本学习”,在小数据集上实现可靠分类表现,提供了一项潜力巨大的深度学习工具。
Keras-TextClassification - 多样预训练模型支持的高效文本分类工具
GithubKeras-TextClassification嵌入式模型开源项目文本分类深度学习神经网络
为中文用户提供高效的文本分类解决方案,支持FastText、BERT、Albert等多种预训练模型,涵盖词、字、句子嵌入。详细介绍数据处理与模型训练流程,通过下载与调用数据,实现多标签分类和文本相似度计算,简化复杂的自然语言处理任务。
t5-base-finetuned-sst2 - 优化GLUE SST-2数据集准确率的高效文本分类模型
GLUE SST-2GithubHuggingfaceT5准确率开源项目模型模型细节训练过程
T5-base-finetuned-sst2是一个在GLUE SST-2数据集上微调的文本分类模型,准确率达到93.23%。该模型基于编码-解码结构,通过多任务的无监督和有监督学习预训练,将任务转化为文本到文本的格式。在训练中,使用了特定的标记化策略和超参数设置,促进模型快速收敛。适合高效处理文本分类任务的应用场景,提供了对现有分类工具的优化方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号