Project Icon

ACCOUNT-OWNERSHIP

结合对比学习和Logistic回归的高效文本分类模型

SetFit模型通过对比学习和Logistic回归,实现精准的文本分类,该模型微调Sentence Transformer以获取特征。无需复杂提示和大规模数据,适用于多样文本分类任务,并可在自有数据集上方便微调。

distilbert-base-multilingual-cased-sentiment - 多语种情感分析模型的高效文本分类能力
Amazon评论GithubHuggingfacedistilbert-base-multilingual-cased-sentiment开源项目情感分析文本分类机器学习模型
本项目基于distilbert-base-multilingual-cased模型进行微调,在amazon_reviews_multi数据集上实现了优异的文本分类效果,准确率和F1值均为0.7648。模型通过优化训练参数和分布式数据处理,实现高效运行,适合多语言情感分析应用场景,可用于全球市场的用户评价分析。
e5-large - 句子嵌入模型应用于文本分类与检索,提升准确率
GithubHuggingfaceMTEBSentence Transformerssentence-similarity分类开源项目检索模型
项目利用Sentence Transformers技术,提升自然语言处理任务中的句子嵌入效率,涵盖分类、检索、聚类及重排序等。该模型在多数据集上优异,尤其是在Amazon极性分类的准确率达90.05%。通过优化句子相似性,增强了在BIOSSES等任务中的相关性得分,是语义搜索和信息检索的理想之选,支持多语言文本分析。
cde-small-v1 - 增强文本分类与信息检索能力的多任务模型
GithubHuggingfaceMTEB分类句子嵌入开源项目检索模型聚类
该项目在多任务环境下表现优异,尤其在文本分类与检索任务中。模型在多个数据集上表现出高准确率与精度,广泛适用于商业、教育与研究领域。其卓越的性能满足了对高精确度的需求,提供了一致而可靠的结果。
my_awesome_model - DistilBERT微调的高效文本分类模型
DistilBERTGithubHugging FaceHuggingface开源项目机器学习模型模型微调自然语言处理
my_awesome_model是一个基于distilbert-base-uncased微调的文本分类模型。该模型在未知数据集上训练,经过3轮迭代后,训练损失降至0.0632,验证损失为0.2355,训练准确率达92.95%。模型采用Adam优化器和多项式衰减学习率。虽然缺乏具体任务信息,但其性能表现显示了良好的文本分类潜力。
deberta-v3-large-zeroshot-v1 - 强大高效的零样本文本分类能力
DeBERTa-v3GithubHuggingface开源项目文本分类模型模型训练自然语言推理零样本分类
模型适用于零样本分类,通过将文本分类任务转换为'真假'判定任务达到自然语言推理效果。使用Hugging Face pipeline实现,较现有模型表现优异。基于27项任务和310类文本进行训练,专注'Entailment'与'Not_Entailment'的二分类,且在多种文本分类场景中表现灵活。模型为开源,受到MIT许可证保护。
bert-base-uncased-finetuned-semeval24 - BERT微调模型在文本分类任务中的出色表现
F1GithubHuggingfacebert-base-uncased准确率开源项目损失模型精调
该微调模型基于google-bert/bert-base-uncased,采用Adam优化器和线性学习率调度策略,经过5个学习周期,在评估集合上取得了0.8254的准确率和0.8237的F1值,适用于需要精确度的文本分类任务。
fineweb-edu-fasttext-classifier - 高效快速的FastText分类器用于网页教育价值评估
FastTextGithubHuggingFaceFWHuggingface分类器开源项目教育价值模型模型评估
该项目引入了一种基于FastText的分类器,旨在评估网页的教育价值。通过使用fineweb-edu-llama3-annotations数据集进行训练,该模型支持高速数据处理,在CPU上每秒可分类超过2000个样本。该分类器与基于transformer的模型进行了性能比较,尤其在标签0、1、2上的表现相近,但在较高标签上性能稍有下降。适合用于需要快速判断网页教育内容的场景,是处理大数据的有效工具。
small-text - Small-Text:Python中的文本分类主动学习工具
GithubPythonsklearnsmall-text开源项目文本分类积极学习
Small-Text 是一个前沿的文本分类主动学习工具,支持多种查询策略、初始化策略和停止准则,用户可以灵活组合使用。工具支持 GPU 加速的 Pytorch 模型和 transformers 集成,适用于复杂文本分类任务,同时也支持 CPU 的轻量安装。科学验证的组件和详细文档使无论是试验还是实际应用,都变得更简单。要求 Python 3.7 或更高版本,支持 CUDA 10.1 或更新版本。如需了解更多,请访问其文档和安装指南。
text_classifier_tf2 - 多模型文本分类框架 支持TextCNN、BERT等
Github开源项目文本分类模型部署深度学习模型训练方法评估指标
该开源项目提供基于TensorFlow 2的多模型文本分类框架。支持TextCNN、TextRNN、BERT等模型,集成词向量增强、对抗训练、对比学习等功能。框架适用于二分类和多分类任务,提供灵活配置选项。项目还包含交互式预测和批量测试工具,便于分析模型性能和错误案例。
fast-bert - 快速训练和部署BERT与XLNet文本分类模型的深度学习库
Fast-BertGithub开源项目文本分类深度学习自然语言处理预训练模型
fast-bert是一个深度学习库,用于训练和部署基于BERT和XLNet的文本分类模型。它支持多类和多标签分类,提供数据处理、模型训练、参数调优和部署功能。该库集成了LAMB优化器和学习率查找器,旨在简化最新自然语言处理技术的应用过程。fast-bert适用于各类文本分类任务,能够帮助开发者快速构建高性能模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号