Project Icon

HRPolicyQandA

使用定制训练的GPT-2模型提升问答系统的响应能力

本项目提供的GPT-2模型经过定制化训练,专注于问答数据集,旨在提高问答任务的自动响应能力。适用于构建对话系统和教育领域,但需要在重要应用中谨慎验证其输出

AI Answer Generator - 基于GPT-4的智能问答系统 即时生成详细回答
AIAI工具人工智能信息检索自然语言处理问答系统
AI Answer Generator是一款基于GPT-4技术的智能问答工具,无需注册即可免费使用。系统能够针对各类问题迅速生成准确、详细的回答,涵盖从简单事实查询到复杂分析等多种主题。这一工具适用于学生、专业人士及信息搜索者,有助于提高工作效率和学习效果。无论是一般性问题还是深度探讨,AI Answer Generator都能提供相关且有价值的信息。使用便捷,无需注册,即可体验高效智能问答服务。
optimized-gpt2-500m - GPT-2语言模型的优化版本 用于多种自然语言处理任务
GithubHuggingfacetransformers人工智能开源项目机器学习模型模型卡片自然语言处理
optimized-gpt2-500m是一个经过优化的GPT-2语言模型,参数量为5亿。该模型在保持GPT-2语言理解和生成能力的同时,提高了推理速度和资源利用效率。它可用于文本生成、对话系统、问答等多种自然语言处理任务,为开发者和研究人员提供了一个高效的预训练语言模型选择。
electra_large_discriminator_squad2_512 - ELECTRA大型判别器模型在SQuAD2.0数据集上的问答系统微调
ELECTRAGithubHuggingface开源项目机器学习模型模型微调自然语言处理问答系统
electra_large_discriminator_squad2_512是基于ELECTRA大型判别器模型在SQuAD2.0数据集上微调的问答系统。该模型在精确匹配和F1分数上分别达到87.10%和89.98%。它使用PyTorch和Transformers库实现,最大序列长度为512,经3轮训练后展现出优秀的问答性能。该项目还提供了详细的训练脚本和系统环境信息,便于其他研究者复现和改进。
MedicalGPT - 优化医疗GPT模型,提升医疗对话系统的响应与精确性
GithubMedicalGPT医患对话医疗大模型开源项目强化学习微调
MedicalGPT项目采用多阶段方法如增量预训练、精细微调及奖励建模强化学习,优化医疗GPT模型,增强医疗对话与问答系统的性能。模型以人类反馈为基础,通过直接偏好优化和强化学习策略,调整生成对话的质量与人类偏好的契合度,提供科学准确的医疗咨询,项目持续接入先进的医疗语言处理技术,应对医疗领域的需求变化。
sapbert-from-pubmedbert-squad2 - 针对问答系统的超参数微调提升模型性能
GithubHuggingfaceQuestion Answeringsapbert-from-pubmedbert-squad2开源项目数据集模型训练
项目在squad_v2数据集上微调了SapBERT-from-PubMedBERT,以提升问答任务性能。采用学习率为2e-05的Adam优化器和线性LR调度器,并通过5个训练周期实现模型收敛,最终验证集损失为1.2582。
Question Generator - 智能问题生成工具 提升效率的得力助手
AI-GPT3AI工具内容定制考试调查问题生成器
Question Generator是一款基于GPT-3等AI技术的智能问题生成工具。它可根据输入内容快速生成高质量、定制化的问题,适用于考试、调查等多种场景。这个AI工具简化了问题创建过程,让用户能轻松生成各类相关问题。教育工作者、市场研究人员和内容创作者都可借助这个工具提高工作效率,获得更好的问题设计效果。
pipeline-as-repo - 项目目标与方法:优化问答系统的性能
DynabenchGithubHuggingfaceQuiz Bowl学术竞赛对抗性问题开源项目模型自然语言处理
该项目旨在通过问答挑战赛提升问答系统的回答准确性,参与者将开发和提交模型,目标是依据模型准确性获得高排名。项目内容包括评估模型、编写对抗性问题,以及提交符合要求的系统。项目推行过程中还包含进度报告、时间线调整及任务分配的更新。
dpr-ctx_encoder-multiset-base - 基于BERT的开放域问答上下文编码模型
BERTDPRGithubHuggingface信息检索开源项目文本编码模型问答系统
该模型采用BERT架构,经由Natural Questions、TriviaQA等多个数据集训练而成。它能将文本段落高效编码为低维向量,是实现开放域问答的关键技术。作为密集段落检索(DPR)系统的重要组成部分,该模型在多个问答基准上取得了优异成绩,推动了开放域问答技术的发展。
TriviaAnsweringMachineREAL - 开发智能问答求解平台以应对学术问答挑战
GithubHuggingfaceQuiz bowl多样性开源项目模型竞赛问答系统问题写作
本项目旨在开发一个AI问答系统,通过解决学术竞赛中的问题来迎接挑战。参与者可以提交模型进行对比,并开发具有难度的对抗性问题,覆盖领域包括艺术、文学和科学。项目鼓励使用外部数据和软件,并在Dynabench平台进行模型评估,推动数据资源共享。除了取得排行榜领先以外,项目还包括撰写多领域的对抗性问题,测试现代NLP系统的局限性,同时保证问题的事实准确性和多样性,以便评估人类与计算机的解题准确性差距。
pdfGPT - 基于GPT的PDF智能问答工具 提高文档阅读效率
GithubOpenAIPDF处理pdfGPT嵌入开源项目语义搜索
pdfGPT是一个开源的PDF文档智能问答工具。它采用文本分割和深度平均网络编码技术,实现PDF内容的语义搜索。通过整合OpenAI功能,pdfGPT生成精确答案并提供页码引用。系统兼容多种模型如GPT-4,同时提供友好界面和API。这一工具显著提高了PDF文档的信息获取效率,适用于研究、学习等多种场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号