Project Icon

voice-safety-classifier

语音聊天毒性检测的高精度分类工具

该项目提供了一个新的语音聊天毒性检测基准模型,基于大规模数据集开发。模型使用WavLM base plus权重,经过2,374小时语音多标签微调,输出标签包括Profanity、DatingAndSexting、Racist、Bullying等。评估显示模型在二元分类任务中的精度达到94.48%。使用者可通过特定命令运行模型权重进行应用。

wav2vec2-xls-r-300m-emotion-ru - 基于XLS-R的俄语语音情感识别模型实现高精度分析
DUSHAGithubHuggingfacewav2vec2-xls-r-300m分类模型开源项目情感分析模型语音情感识别
该模型是基于wav2vec2-xls-r-300m微调的俄语语音情感识别(SER)模型。利用DUSHA数据集进行训练,包含12.5万条俄语音频样本,可识别虚拟助手对话中的积极、悲伤、愤怒和中性四种基本情绪。模型在测试集上达到90.1%的准确率,为俄语语音情感分析提供了高精度解决方案。
distilbert-base-multilingual-cased-sentiment - 多语种情感分析模型的高效文本分类能力
Amazon评论GithubHuggingfacedistilbert-base-multilingual-cased-sentiment开源项目情感分析文本分类机器学习模型
本项目基于distilbert-base-multilingual-cased模型进行微调,在amazon_reviews_multi数据集上实现了优异的文本分类效果,准确率和F1值均为0.7648。模型通过优化训练参数和分布式数据处理,实现高效运行,适合多语言情感分析应用场景,可用于全球市场的用户评价分析。
dehatebert-mono-english - 高效检测英文仇恨言论的英语深度学习模型
GithubHuggingfacehatespeech单语多语言开源项目模型深度学习英文
该模型专注于检测英文仇恨言论,使用单语言数据训练,并在多语言BERT模型上进行微调。它的最佳验证得分为0.726030,采用了2e-5的学习率。训练代码可在GitHub上查阅。该项目由Aluru、Mathew、Saha和Mukherjee共同开发,相关论文已在ECML-PKDD 2020大会上发表,探讨了跨语言仇恨言论检测的深度学习方法。
wavlm-base - 适用于多语音任务的自监督预训练模型
GithubHuggingfaceLibriSpeechWavLM开源项目模型自监督学习语音识别音频分类
WavLM是基于自监督学习的语音预训练模型,旨在支持多种语音任务。模型在960小时Librispeech数据集上进行预训练,适用于语音识别和分类等任务,需在下游任务中微调。WavLM通过门控相对位置偏置和发音混合训练策略,强调说话者身份保留和内容建模,在SUPERB基准测试中表现优异。模型主要在英语环境中有良好表现,但目标是提供全语言栈的统一表示。
jailbreak-classifier - 提示分类工具,增强系统安全与内容审核
GithubHuggingfaceJailbreak Classifier安全开源项目文本分类机器学习模型规范化
项目基于BERT模型微调,专用于识别破解与无害提示信息。利用jailbreak-classification数据集进行训练,可应用于安全和内容审核场景,提升系统安全性与审核能力,是一个多平台适用的解决方案。
bert-base-uncased-emotion - 情感数据集的高效文本分类模型
F1分数GithubHuggingfacebert-base-uncased-emotion准确率开源项目情感分析文本分类模型
bert-base-uncased模型针对情感数据集的微调结果显示,其在准确率和F1分数分别达到94.05%和94.06%。借助PyTorch和HuggingFace平台,该模型实现高效的情感文本分类,适用于社交媒体内容分析,特别是在Twitter环境中,为数据科学家和开发人员提供情感解析的精确工具。
safety-flan-t5-base - 开源对话内容安全评估模型FLAN-T5
FLAN-T5GithubHuggingfacePytorch开源项目机器学习模型自然语言处理语言模型
safety-flan-t5-base是FLAN-T5架构下的内容安全评估模型,主要用于分析对话文本中的潜在风险。模型通过对输入内容进行安全性判断,识别不当或有害信息。基于PyTorch开发,提供标准API接口,可集成于对话系统实现内容审核功能。
HarmBench-Llama-2-13b-cls - 文本行为分类与上下文分析的前沿方案
GithubHarmBenchHuggingfaceLLM分类器开源项目性能比较模型行为检测
该项目提供一款先进的文本行为分类工具,专为在HarmBench框架中使用而设计,采用Llama-2-13b模型支持标准和上下文行为识别。此工具不仅在文本中检测行为,还能全面分析其上下文。用户可通过官网获得使用指南和示例。经过与现有指标与分类器的比较,该分类器的性能显著优于大多数竞争对手,尤其在与GPT-4进行的性能对比中表现卓越。HarmBench环保倚赖自动化红队评估和分类技术,为用户提供稳定可靠的文本行为分类方案。
autonlp-Tweet-Sentiment-Extraction-20114061 - AutoNLP推文情感分析模型达80%准确率
AutoNLPGithubHuggingface开源项目情感分析机器学习模型模型训练自然语言处理
这是一个基于AutoNLP训练的多类别分类模型,主要应用于推文情感提取分析。模型在验证集上的准确率为80.36%,F1分数为0.807。开发者可通过cURL或Python API调用该模型进行推文情感分析,适用于社交媒体数据分析和用户反馈处理等场景。
wav2vec2-xlsr-53-russian-emotion-recognition - 俄语语音情感识别工具
GithubHuggingfaceXLS-R Wav2Vec2俄语情感识别开源项目情感分类情感识别模型音频分类
本项目应用XLS-R Wav2Vec2模型进行俄语语音的情感识别,准确率为72%。通过多种情感分类标签,模型可识别愤怒、厌恶、兴奋、恐惧、快乐、中立及悲伤等情感。项目采用MIT许可证,使用Russian Emotional Speech Dialogs数据集,适合对情感识别技术有深入理解和应用需要的用户。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号