Project Icon

PatrickStar

通过基于块的内存管理并行训练大型语言模型

PatrickStar通过其创新的块状内存管理技术,使大型预训练模型训练更加高效且资源节约。该技术优化了内存使用,让硬件资源较少的环境下也能有效训练庞大模型,显著提升训练效率和模型规模,支持多节点超大模型的训练。

PatrickStar 项目介绍

认识 PatrickStar

在自然语言处理领域,预训练模型(PTM)已经成为学术研究和工业应用的热点。然而,训练这些模型需要巨大的硬件资源,使得它们仅对AI领域中的少部分人群可用。为了改变这一现状,PatrickStar旨在让PTM训练变得人人可及。

在训练PTM的过程中,内存溢出错误(Out-of-memory error, OOM)常常是工程师们的噩梦。为了解决这个问题,通常我们需要引入更多的GPU来存储模型参数。然而,PatrickStar提供了一个更优的解决方案。通过异构训练方法(DeepSpeed Zero Stage 3也使用类似技术),PatrickStar能够充分利用CPU和GPU的内存,使用户能够用更少的GPU训练更大的模型。

系统设计

PatrickStar的核心思想是:在训练过程中,非模型数据(主要是激活值)会不断变化,而当前的异构训练方案常常是静态地将模型数据分割到CPU和GPU上。为了更好地利用GPU资源,PatrickStar提出了一种基于块的动态内存管理模块,进行动态内存调配。PatrickStar的内存管理支持卸载除当前计算部分以外的所有模型数据到CPU,以节省GPU资源。此外,基于块的内存管理在扩展到多个GPU时,对于集体通信非常高效。

项目成果

在实验中,PatrickStar v0.4.3能够在微信数据中心的节点上使用8个Tesla V100 GPU和240GB GPU内存训练一个具有180亿(18B)参数的模型,比DeepSpeed的能力强两倍。此外,PatrickStar即使在相同大小的模型上也表现优异。

我们还在NVIDIA的A100 SuperPod单节点上评估了PatrickStar v0.4.3,它能在1TB CPU内存下,用8个A100 GPU训练68B的模型,比DeepSpeed v0.5.7处理的规模大6倍以上。更重要的是,除了模型规模之外,PatrickStar在效率上远胜于DeepSpeed。

在多个SuperPod节点上,PatrickStar成功在32个GPU上训练GPT3-175B模型。这是首次在如此小的GPU集群上运行GPT3,而微软则使用了10,000个V100来进行相同的工作。

我们还用PatrickStar训练了CLUE-GPT2模型,其损失和准确率曲线表现优异。

安装方法

使用以下命令即可安装PatrickStar:

pip install .

注意,PatrickStar要求gcc版本不低于7。您也可以使用NVIDIA的NGC镜像,推荐使用以下镜像:

docker pull nvcr.io/nvidia/pytorch:21.06-py3

使用指南

PatrickStar基于PyTorch,因此方便将现有的PyTorch项目迁移过来。以下是一个PatrickStar的使用示例:

from patrickstar.runtime import initialize_engine

config = {
    "optimizer": {
        "type": "Adam",
        "params": {
            "lr": 0.001,
            "betas": (0.9, 0.999),
            "eps": 1e-6,
            "weight_decay": 0,
            "use_hybrid_adam": True,
        },
    },
    ...
}

def model_func():
    return MyModel(...)

model, optimizer = initialize_engine(model_func=model_func, local_rank=0, config=config)

...

for data in dataloader:
    optimizer.zero_grad()
    loss = model(data)
    model.backward(loss)
    optimizer.step()

PatrickStar的配置格式与DeepSpeed配置JSON相同,主要包括优化器参数、损失标量以及一些PatrickStar特有的配置。

详细的使用说明可参阅指导文档

开源协议

本项目基于BSD 3-Clause开源协议。

联系我们

如果您有任何问题或需要支持,请联系以下邮箱:

本项目由微信AI团队和腾讯NLP Oteam共同支持。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号