Project Icon

ViT-L-16-HTxt-Recap-CLIP

对比图文模型在零样本图像分类中的新进展

这个模型利用Recap-DataComp-1B数据集训练,旨在实现零样本图像分类。通过OpenCLIP库,用户能够编码和分类图像与文本。模型的数据源自网络抓取并经过重新标注,可能会包含偏见或不准确之处,请在使用时注意这些风险。更多数据集详情可以查阅数据集卡片页面。

metaclip-h14-fullcc2.5b - 大规模视觉语言模型基于25亿CommonCrawl数据训练
GithubHuggingfaceMetaCLIP多模态学习开源项目模型自然语言处理计算机视觉零样本分类
MetaCLIP是一个基于25亿CommonCrawl数据点训练的大规模视觉语言模型。该模型由Xu等人在《Demystifying CLIP Data》论文中提出,旨在解析CLIP的数据准备流程。MetaCLIP支持图像与文本的联合嵌入,可应用于零样本图像分类、文本图像检索等任务。作为一个开源项目,MetaCLIP为研究人员提供了探索大规模视觉语言模型的新方向,有助于推进计算机视觉和自然语言处理领域的发展。
chinese-clip-vit-large-patch14 - 结合ViT-L/14和RoBERTa-wwm-base的中文图文对比模型
Chinese-CLIPGithubHuggingface图像编码器图文相似度开源项目文本编码器模型零样本分类
这一模型采用ViT-L/14和RoBERTa-wwm-base进行编码,在大规模中文图文数据集上训练,支持高效的图文嵌入和相似度计算。项目提供直观的API和多项任务评估,展现了在零样本图像分类和图文检索上的杰出表现。
CLIP-convnext_base_w-laion2B-s13B-b82K-augreg - ConvNeXt-Base架构的CLIP模型用于高效图像分类
CLIPConvNeXtGithubHuggingfaceLAION-5B图像检索开源项目模型零样本图像分类
该项目提供了一系列基于ConvNeXt-Base架构的CLIP模型,在LAION-5B数据集子集上训练。这些模型作为ViT和ResNet的替代方案,在模型规模和图像分辨率方面展现出良好的可扩展性。经过13B样本训练,模型在ImageNet零样本分类任务中达到70.8%以上的top-1准确率,体现出较高的样本效率。这些模型可应用于零样本图像分类、图像文本检索等多种任务。
siglip-so400m-patch14-224 - 增强图像文本任务的性能,探索形状优化模型
GithubHuggingfaceSigLIPWebLI对比学习开源项目模型视觉零样本图像分类
SigLIP通过sigmoid损失函数优化了CLIP模型的图像和文本匹配性能。此模型在WebLi数据集上预训练,可实现更大的批量训练,同时在小批量下表现出色。适用于零样本图像分类和图像文本检索任务,能在不同环境下获得高效结果。该模型在16个TPU-v4芯片上训练三天,而图像预处理中使用标准化和归一化,提升了计算效率。
DFN2B-CLIP-ViT-B-16 - 自动化数据过滤技术优化对比学习模型
CLIPGithubHuggingfaceOpenCLIPZero-Shot对比学习开源项目数据过滤模型
DFN2B-CLIP-ViT-B-16通过Data Filtering Networks从12.8B对未筛选的数据中选出优质样本,提升CLIP模型训练效果。该模型在ImageNet 1k、CIFAR-10等数据集上表现优异,平均精度为0.609232,支持OpenCLIP,增强了图像与文本匹配能力。特别适合需要提升零样本图像分类准确性的用户。
clip-ViT-B-32-multilingual-v1 - CLIP-ViT-B-32多语言模型实现文本图像向量映射和跨语言搜索
CLIPGithubHuggingfacesentence-transformers图像搜索多语言模型开源项目模型零样本分类
CLIP-ViT-B-32-multilingual-v1是OpenAI CLIP-ViT-B32模型的多语言拓展版本。该模型能将50多种语言的文本和图像映射到同一向量空间,支持多语言图像搜索和零样本图像分类。通过sentence-transformers库,用户可以方便地使用该模型。模型采用多语言知识蒸馏技术,将CLIP原始向量空间对齐到多语言空间。这为跨语言图像搜索和理解提供了有力支持,是图像-文本多语言处理的有效工具。
CLIP-convnext_base_w-laion_aesthetic-s13B-b82K - LAION-5B训练的ConvNeXt-Base CLIP模型
CLIPConvNextGithubHuggingface图像分类开源项目数据集机器学习模型
ConvNeXt-Base架构的CLIP模型在LAION-5B子集上完成训练,支持256x256和320x320两种图像分辨率。在ImageNet零样本分类评测中取得70.8%-71.7%的top-1准确率,样本效率超过同规模ViT-B/16模型。该模型主要用于研究领域,可执行零样本图像分类和图文检索等任务。
chinese-clip-vit-huge-patch14 - 基于ViT-H/14和RoBERTa的中文图文对比学习模型
Chinese-CLIPGithubHuggingface中文数据集图像编码器开源项目文本编码器检索模型
chinese-clip-vit-huge-patch14是一个基于ViT-H/14和RoBERTa-wwm-large的中文CLIP模型,在大规模中文图文数据上训练,表现卓越。支持在MUGE、Flickr30K-CN和COCO-CN等数据集中的图文检索和零样本分类。提供API实现简便的图文特征提取及相似度计算,详情请参见GitHub仓库。
DFN5B-CLIP-ViT-H-14-378 - 大规模数据筛选优化的视觉语言预训练系统
CLIPGithubHuggingface图像分类开源项目数据过滤网络机器学习模型计算机视觉
DFN5B-CLIP-ViT-H-14-378是一款基于CLIP架构的视觉语言模型,采用数据过滤网络(DFN)技术从43B未筛选的图像-文本对中提取5B高质量数据进行训练。该模型在多项视觉任务中表现优异,平均准确率达70.94%。支持零样本图像分类,可与OpenCLIP框架无缝集成,为计算机视觉和自然语言处理研究提供了高性能的预训练模型基础。
fashion-clip - 专为时尚领域优化的对比语言视觉学习模型
CLIPFashionCLIPGithubHugging Face开源项目时尚行业模型
FashionCLIP是一个为时尚行业优化的CLIP模型,用于提升商品检索、分类和时尚分析的表现。通过超过70万对图像和文本数据进行微调,FashionCLIP在零样本场景下表现出色。更新版FashionCLIP 2.0采用更多训练数据,显著提高了FMNIST、KAGL和DEEP数据集的性能。项目提供开源代码和模型权重,可在Hugging Face上获取,并支持多种API和教程便于上手。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号