DFN2B-CLIP-ViT-B-16项目介绍
项目简介
DFN2B-CLIP-ViT-B-16是一个基于对比语言-图像预训练(CLIP)技术的模型。该模型在DFN-2B数据集上进行了训练,旨在通过滤过未经挑选的海量数据池,提升模型在图像及文字识别任务上的表现。数据过滤网络(Data Filtering Networks,DFNs)是一种小型网络结构,用于自动筛选大量未经挑选数据。在这次训练中,共使用了从12.8亿对未经筛选的图像-文本对中筛选出的20亿张图像。
模型详情
- 模型类型: 对比图像-文本,零样本图像分类。
- 数据集: DFN-2b数据集。
- 相关文献:
- 观察样本数: 12.8B
模型性能
该模型在多个公开数据集上进行了测试,表现如下:
数据集 | 指标 |
---|---|
ImageNet 1k | 0.76236 |
Caltech-101 | 0.942894 |
CIFAR-10 | 0.9672 |
CIFAR-100 | 0.8347 |
CLEVR Counts | 0.232333 |
CLEVR Distance | 0.245267 |
Country211 | 0.19545 |
Describable Textures | 0.575532 |
EuroSAT | 0.54 |
FGVC Aircraft | 0.248503 |
Food-101 | 0.91303 |
GTSRB | 0.469913 |
ImageNet Sketch | 0.620684 |
ImageNet v2 | 0.682 |
ImageNet-A | 0.482133 |
ImageNet-O | 0.493 |
ImageNet-R | 0.830967 |
KITTI Vehicle Distance | 0.192686 |
MNIST | 0.782 |
ObjectNet | 0.631851 |
Oxford Flowers-102 | 0.819895 |
Oxford-IIIT Pet | 0.936907 |
Pascal VOC 2007 | 0.788528 |
PatchCamelyon | 0.521545 |
Rendered SST2 | 0.486546 |
RESISC45 | 0.61381 |
Stanford Cars | 0.90735 |
STL-10 | 0.97525 |
SUN397 | 0.714162 |
SVHN | 0.598955 |
Flickr | 0.7728 |
MSCOCO | 0.518773 |
WinoGAViL | 0.541748 |
iWildCam | 0.155574 |
Camelyon17 | 0.499283 |
FMoW | 0.141149 |
Dollar Street | 0.625 |
GeoDE | 0.891023 |
平均值 | 0.609232 |
模型使用
在使用OpenCLIP与该模型时,开发者可以通过以下步骤进行简单的图像及文本识别:
import torch
import torch.nn.functional as F
from urllib.request import urlopen
from PIL import Image
from open_clip import create_model_from_pretrained, get_tokenizer
model, preprocess = create_model_from_pretrained('hf-hub:apple/DFN2B-CLIP-ViT-B-16')
tokenizer = get_tokenizer('ViT-B-16')
image = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
image = preprocess(image).unsqueeze(0)
labels_list = ["a dog", "a cat", "a donut", "a beignet"]
text = tokenizer(labels_list, context_length=model.context_length)
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
image_features = F.normalize(image_features, dim=-1)
text_features = F.normalize(text_features, dim=-1)
text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias)
zipped_list = list(zip(labels_list, [round(p.item(), 3) for p in text_probs[0]]))
print("Label probabilities: ", zipped_list)
引用
若使用该模型与相关技术,建议引用下列文献:
@article{fang2023data,
title={Data Filtering Networks},
author={Fang, Alex and Jose, Albin Madappally and Jain, Amit and Schmidt, Ludwig and Toshev, Alexander and Shankar, Vaishaal},
journal={arXiv preprint arXiv:2309.17425},
year={2023}
}