Project Icon

Vikhr-Llama-3.2-1B-instruct-GGUF

俄语高效指令模型,适用于低性能或移动设备

此指令模型基于Llama-3.2-1B-Instruct,使用GrandMaster-PRO-MAX俄语数据集训练,能效比基础模型提升5倍,支持低性能或移动设备部署。支持在少量计算资源下实现强大的文本生成功能。生成温度建议为0.3。在ru_arena_general中表现优异,适合精确高效的文本生成需求。由Vikhr团队的知名作者开发,致力于推动开源大型语言模型的创新。

Llama-3.2-3B-Instruct-GGUF - Meta推出的新一代多语言AI对话模型 支持128K上下文
128K上下文GithubHuggingfaceLlama-3.2-3B-Instruct多语言对话模型开源项目模型社区模型
Llama-3.2-3B-Instruct是Meta发布的新一代多语言AI模型,针对对话、检索和摘要任务进行优化。官方支持8种语言,实际训练语言更多。模型具备128K长上下文能力,可处理复杂任务。社区贡献者bartowski基于llama.cpp提供GGUF量化版本,便于多设备部署。
saiga_llama3_8b - 基于Llama-3模型的俄语聊天自动化工具
GithubHuggingfaceLlama-3Saiga俄语聊天机器人对话格式开源项目模型生成模型
项目基于Llama-3模型开发,专注于俄语对话处理。通过优化提示格式和配置,提升在信息提供和故事创作方面的应用。最新版本v7在性能和用户交互上取得显著进步,并支持多种格式以满足不同开发需求。用户可通过Colab体验此工具,探索其多任务处理能力。
Vikhr-Nemo-12B-Instruct-R-21-09-24 - 全新升级的俄英双语大语言模型 内置RAG检索增强功能
GithubHuggingfaceRAG技术Vikhr-Nemo人工智能开源项目机器学习模型语言模型
Vikhr-Nemo-12B-Instruct-R是一个基于Mistral-Nemo的开源语言模型,针对俄语和英语进行了深度优化。模型通过SFT和SMPO方法训练,具备推理分析、文本生成、代码编写等多项能力。其特色在于支持RAG检索增强和128K长文本处理,在俄语基准测试中接近gpt-4o-mini水平。该项目完全开源,包含训练代码和数据集。
tokyotech-llm-Llama-3.1-Swallow-8B-Instruct-v0.1-gguf - 基于Llama 3.1的日英双语指令模型GGUF版本 支持高效本地部署
GithubHuggingfaceLlama-3.1人工智能开源项目日语模型机器学习模型语言模型
该项目是tokyotech-llm团队开发的Llama-3.1-Swallow-8B-Instruct模型的GGUF格式版本。原模型基于Llama 3.1架构,使用imatrix日语数据集训练,支持日英双语交互。GGUF格式优化了模型的本地部署效率,特别适合在llama.cpp框架下运行。模型可用于日语对话、任务执行等多种场景,具有良好的指令理解能力。
Llama-3.2-1B-Instruct-q4f16_1-MLC - 高性能量化指令模型用于MLC-LLM和WebLLM项目
GithubHuggingfaceLlama-3.2-1B-InstructMLC-LLM人工智能大语言模型开源项目模型聊天机器人
Llama-3.2-1B-Instruct模型的MLC格式q4f16_1版本,适用于MLC-LLM和WebLLM项目。支持命令行聊天、REST服务器部署和Python API调用。模型采用量化技术,在保持性能的同时减小体积,适合多种设备高效推理。可通过简单命令或代码快速部署使用。
Ministral-3b-instruct-GGUF - 更高效的量化语言模型,为文本生成带来显著性能提升
Apache 2.0GithubHuggingfaceNLPtransformers开源项目模型模型量化语言模型
Ministral-3b-instruct-GGUF是一个基于llama.cpp的高效量化模型,专为Ministral系列的3B参数设计优化,并从Mistral-7B进行微调。它使用混合数据集,主要用于英语文本生成。通过量化技术,该模型在保持精度的同时,显著减少了存储和计算需求,理想应用于高效文本生成场景。项目遵循Apache 2.0许可协议,以确保合规使用。
Llama-3.2-3B-Instruct-uncensored-GGUF - 高效文本生成的前沿模型格式
GPU加速GithubHuggingfaceLlama-3.2-3B-Instruct-uncensored-GGUF开源项目文本生成模型模型格式量化
Llama-3.2-3B-Instruct-uncensored-GGUF采用了最新的GGUF格式,替代了不再支持的GGML,提升了大规模文本生成的性能。它兼容多种客户端与库,从llama.cpp到进阶GPU工具,包括Python库和用户友好的图形界面,如LM Studio和text-generation-webui,以及适用于故事创作的KoboldCpp。此更新提升了模型推理效率,具有广泛的兼容性,适用于多种系统平台,实现快速响应与多功能扩展。
Meta-Llama-3.1-405B-Instruct-GGUF - Meta-Llama 3.1量化版大模型支持多语种文本生成
GGUFGithubHuggingfaceMeta-Llama-3.1-405B-Instruct大语言模型开源项目文本生成模型量化模型
Meta-Llama-3.1-405B-Instruct模型的GGUF量化版本支持英语、德语、法语在内的8种语言文本生成。通过2-bit和3-bit量化技术优化,可在llama.cpp、LM Studio等主流框架上运行,方便开发者进行本地部署和应用开发。
Llama-3.2-1B-Instruct-GGUF - Llama 3.2模型的多精度量化版本
GithubHuggingfaceLlama人工智能开源开源项目模型语言模型量化
Llama-3.2-1B-Instruct-GGUF是Llama 3.2模型的量化版本,使用llama.cpp和imatrix方法进行处理。该项目提供从f16到Q3_K_XL多种精度选项,文件大小在0.80GB至2.48GB之间。这些模型支持多语言处理,适合在资源受限的设备上运行,用户可根据需求选择合适版本以平衡性能和资源占用。
Llama-3.2-3B-Instruct-uncensored-GGUF - 3B参数指令微调语言模型的高效GGUF量化版本
GGUFGithubHuggingfaceLlama人工智能开源项目模型量化
Llama-3.2-3B-Instruct-uncensored模型的GGUF量化版本,提供从1.6GB到7.3GB不等的多种量化类型。量化后的模型大小显著减小,便于部署使用,同时尽可能保持原模型性能。项目包含详细的量化版本说明、使用指南和常见问题解答,有助于用户选择适合的版本。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号