Project Icon

Vikhr-Llama-3.2-1B-instruct-GGUF

俄语高效指令模型,适用于低性能或移动设备

此指令模型基于Llama-3.2-1B-Instruct,使用GrandMaster-PRO-MAX俄语数据集训练,能效比基础模型提升5倍,支持低性能或移动设备部署。支持在少量计算资源下实现强大的文本生成功能。生成温度建议为0.3。在ru_arena_general中表现优异,适合精确高效的文本生成需求。由Vikhr团队的知名作者开发,致力于推动开源大型语言模型的创新。

Llama-3.2-11B-Vision-Instruct - 高效训练和部署具有多语言能力的大规模语言模型
GithubHuggingfaceLlama 3.2MetaUnsloth大语言模型开源项目模型模型微调
Llama-3.2-11B-Vision-Instruct是Meta开发的多语言大规模视觉语言模型,具备强大的对话和图像理解能力。该项目采用Unsloth技术,实现训练速度提升2.4倍,内存使用减少58%。模型支持英语、德语、法语等多种语言,适用于对话、检索、摘要等任务。项目提供简单易用的Colab笔记本,方便开发者进行模型微调和部署。Llama-3.2系列在多项行业基准测试中表现出色,超越了许多开源和闭源的对话模型。
Llama-3.2-3B-Instruct-uncensored-GGUF - 量化的语言模型版本,促进文本生成与信息获取
GithubHugging FaceHuggingfaceLlama-3.2-3B-Instruct-uncensored内幕交易开源项目文本生成模型量化
Llama-3.2-3B-Instruct-uncensored-GGUF项目是一个未过滤的量化语言模型版本,增强了文本生成的多样性和信息获取效率。通过llama.cpp的量化处理,该模型在保持高效性能的同时输出高质量响应。其特点包括在敏感话题上的信息提供更全面,响应拒绝次数少。支持研究和开发中的多场景应用,用户可以在相关平台上进行交互,实现从文本生成到信息提取的多领域应用。
Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic - 多语种量化优化模型,显著降低内存占用
GithubHuggingfaceLlama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic多语言支持开源项目文本生成模型模型优化量化
通过将权重和激活量化为FP8格式,该项目优化了Llama-3.1-Nemotron模型,显著降低了GPU内存与磁盘的占用。模型适用于商业与研究,支持多语言开发和会话助手的构建。利用vLLM,可以实现高效部署并具有OpenAI兼容性。Llama-3.1-Nemotron-70B-Instruct-HF-FP8-dynamic在诸多测试中表现优良,在Arena-Hard评估中达99.41%的恢复率。
Llama-3.2-1B-Instruct-GGUF - Meta开发的多语言对话AI模型
GithubHuggingfaceLlama-3.2人工智能多语言支持大语言模型开源许可开源项目模型
Llama-3.2-1B-Instruct是Meta开发的多语言对话AI模型,支持128K上下文长度和8种主要语言。该模型适用于代理检索、摘要等任务,由meta-llama创建并提供GGUF量化版本。作为社区模型,它针对多语言对话场景优化,可用于开发多种对话应用。使用时请注意相关责任和免责声明。
Llama-3.2-3B-Instruct-GGUF - 多语言模型优化文本生成与对话
GithubHuggingfaceLlama 3.2Meta元学习多语言文本生成开源项目模型许可协议
Llama 3.2作为多语言生成模型,通过优化变换器架构,在文本生成和对话中表现出色,适用于商业和研究。支持英语、德语、法语等多种语言,并可通过监督微调和人类反馈提升性能,特别在信息检索和总结任务中表现优异。使用需遵循许可协议。
Meta-Llama-3.1-8B-Instruct-GGUF - 高性能量化模型支持多语言文本生成
GGUFGithubHuggingfaceMeta-Llama-3.1多语言大语言模型开源项目文本生成模型
Meta-Llama-3.1-8B-Instruct模型的GGUF格式文件集支持高效推理和多语言文本生成。GGUF是llama.cpp团队推出的新格式,替代了原有的GGML。该模型适用于英语、德语、法语等8种语言的助手式对话和自然语言生成任务。项目还介绍了多种支持GGUF的客户端和库,为用户提供了灵活的使用选择。
Llama-3.2-1B-Instruct - Unsloth技术加速大型语言模型微调 提升效率降低资源消耗
GithubHuggingfaceLlama 3.2Unsloth内存优化多语言支持开源项目模型模型微调
Llama-3.2-1B-Instruct项目利用Unsloth技术优化大型语言模型微调过程。该方法可将微调速度提升2-5倍,同时减少70%内存占用。项目提供多个Google Colab笔记本,支持Llama 3.2、Gemma 2和Mistral等模型的高效微调。这一创新技术为AI语言模型开发提供了更高效的解决方案,有助于推动相关领域的进步。
Llama-3.2-1B-Instruct-4bit - 精简高效的多语言文本生成工具
GithubHuggingfaceLlama 3.2Meta可接受使用政策开源项目机器学习模型许可协议
Llama-3.2-1B-Instruct-4bit是从Meta的Llama 3.2-1B-Instruct模型转换为MLX格式的产品,支持包括英语、德语、法语在内的多语言文本生成。引入4bit量化技术以提升运行效率与支持更大输入扩展。提供便捷的Python接口以实现文本生成,适合对话系统和内容创作等应用。遵循Meta的社区许可协议以确保合法使用。
Meta-Llama-3-8B-Instruct-GGUF - Llama 3系列8B参数指令微调模型 支持多级量化
GithubHuggingfaceLlama 3Meta人工智能大语言模型开源项目模型自然语言处理
Meta-Llama-3-8B-Instruct-GGUF是Llama 3系列的8B参数指令微调模型。项目提供2-bit至16-bit多种量化级别的GGUF格式,适应不同部署场景。模型在对话和指令遵循方面表现优异,可用于开发AI助手。项目包含详细使用说明和多项NLP任务的基准测试结果,展示了模型的卓越性能。
Mistral-7B-Instruct-v0.2-llamafile - 高效多功能的开源语言模型
AI模型GithubHuggingfaceMistral-7B-Instruct-v0.2大型语言模型开源项目指令微调模型自然语言处理
Mistral-7B-Instruct-v0.2是Mistral AI公司开发的改进版指令微调语言模型,拥有70亿参数。该模型支持多种量化格式和llamafile格式,可在CPU和GPU上高效运行,适用于对话、文本生成等多种场景。用户可根据设备选择合适的量化版本,通过命令行或Python代码轻松使用。模型在多项任务中表现优异,为开发者和研究者提供了强大的开源语言处理工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号