Project Icon

MagNet

多尺度语义分割框架提升图像精度

MagNet是一种多尺度语义分割框架,采用多阶段处理方法解决高分辨率图像中的局部歧义问题。每个处理阶段对应一个放大级别,实现从粗到细的信息传播。在城市景观、航拍场景和医学图像等高分辨率数据集上的实验显示,MagNet的性能显著超越现有方法,为高分辨率图像的精确语义分割提供了新的技术方案。

ml-mgie - 基于多模态大语言模型的智能图像编辑技术
GithubMGIE图像编辑多模态大型语言模型开源项目指令引导
MGIE项目通过多模态大语言模型增强指令式图像编辑能力。该技术生成详细指令并提供明确指导,使编辑模型能更准确理解和执行编辑意图。结合端到端训练的视觉想象和图像操作,MGIE为图像编辑提供更灵活精确的控制方法。
mit-b4 - 使用SegFormer预训练模型提升语义分割效率
GithubHugging FaceHuggingfaceImageNetSegFormerTransformer开源项目模型语义分割
此项目提供SegFormer的b4-sized预训练模型,具有分层Transformer和轻量级MLP解码头,在ADE20K和Cityscapes等基准上展现出色性能。经过ImageNet-1k预训练的SegFormer可用于下游任务微调,满足多种应用需求。用户可在[模型库](https://huggingface.co/models?other=segformer)中根据任务需求选择合适版本,优化图像分割效果。
SOTA-MedSeg - 医学图像分割前沿挑战与顶级方法概览
GithubMICCAIU-Net医学图像分割开源项目挑战赛深度学习
SOTA-MedSeg项目汇总了医学图像分割领域的前沿挑战和顶级方法。涵盖头部、颈部、心脏和腹部等多个身体部位的分割任务,包括脑肿瘤、主动脉瘤和肾脏肿瘤等疾病。项目列出各大挑战赛的最佳方法及性能指标,提供相关论文和代码链接,是了解医学图像分割最新进展的综合资源。
Mesh_Segmentation - 3D网格分割与特征提取技术发展概览
Githubmesh processing分割开源项目深度学习特征提取计算机图形学
本项目整理了3D网格分割和特征提取领域的重要研究进展,涵盖2019年至2024年间的创新技术,如变形自动编码器、窗口变换器和图卷积网络等。同时收录了相关数据集、课程资源和关键论文,为该领域研究人员提供全面参考,促进3D网格处理技术的发展。
ritm_interactive_segmentation - 迭代训练与掩码引导的交互式图像分割方法
Github交互式图像分割开源项目神经网络计算机视觉迭代训练遮罩引导
该项目提出了一种基于掩码引导的迭代训练方法,用于交互式图像分割。这种方法能够分割新对象,也可从外部掩码开始修正。采用简单前馈模型,无需额外优化即可达到先进性能。项目提供训练和测试代码、预训练模型及交互式演示,支持多种数据集和评估指标。
segformer-b4-finetuned-ade-512-512 - 512x512分辨率下SegFormer的高效Transformer语义分割实现
ADE20kGithubHuggingfaceSegFormerTransformer图像处理开源项目模型语义分割
本项目展示了SegFormer模型如何应用在ADE20k数据集上,以512x512分辨率进行微调。该模型采用分层Transformer编码器与轻量级全MLP解码头的设计,并在ImageNet-1k预训练后用于语义分割。其适用于多个基准测试如ADE20K和Cityscapes,为视觉分割提供强大而灵活的工具。用户可以使用该模型进行图像的语义分割,或选择适合特定任务的微调版本。
MNN - 高效轻量的深度学习框架,支持多设备推理和训练
GithubMNN开源项目推理引擎深度学习框架轻量级高性能
MNN是一个高效轻量的深度学习框架,支持设备上的推理和训练。已被阿里巴巴30多个应用集成,覆盖直播、短视频、搜索推荐等70多种场景。MNN适用于嵌入式设备,支持TensorFlow、Caffe、ONNX等多种模型格式,并优化了ARM和x64 CPU及多种GPU的计算性能。通过MNN Workbench,用户可以下载预训练模型、进行可视化训练并一键部署到设备上。
sebotnet33ts_256.a1h_in1k - 结合ResNet与自注意力的高性能图像分类模型
BotNetGithubHuggingfaceImageNet-1ktimm图像分类开源项目模型深度学习
sebotnet33ts_256.a1h_in1k是一个融合ResNet架构和BotNet设计的图像分类模型,整合了Squeeze-and-Excitation通道注意力机制。该模型在ImageNet-1k数据集上训练,通过timm库实现。它采用LAMB优化器、强化的dropout和随机深度技术,以及余弦学习率调度。模型提供灵活的配置选项,包括块/阶段布局和注意力层等,适用于图像分类和特征提取任务。其平衡了性能和训练效率,为计算机视觉领域提供了实用的解决方案。
efficientvit - EfficientViT多尺度线性注意力用于高分辨率密集预测
EfficientViTGithub图像分割开源项目模型优化深度学习计算机视觉
EfficientViT是一种新型ViT模型,专注于高效处理高分辨率密集预测视觉任务。其核心是轻量级多尺度线性注意力模块,通过硬件友好操作实现全局感受野和多尺度学习。该项目提供图像分类、语义分割和SAM等应用的预训练模型,在性能和效率间达到平衡,适合GPU部署和TensorRT优化。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号