Project Icon

MagNet

多尺度语义分割框架提升图像精度

MagNet是一种多尺度语义分割框架,采用多阶段处理方法解决高分辨率图像中的局部歧义问题。每个处理阶段对应一个放大级别,实现从粗到细的信息传播。在城市景观、航拍场景和医学图像等高分辨率数据集上的实验显示,MagNet的性能显著超越现有方法,为高分辨率图像的精确语义分割提供了新的技术方案。

mask2former-swin-large-cityscapes-panoptic - 在图像分割任务中,Mask2Former模型以高效提升性能
CityscapesGithubHugging FaceHuggingfaceMask2FormerTransformer图像分割开源项目模型
该项目使用Mask2Former模型,整合多尺度变形注意力和掩码注意力机制,在实例、语义及全景分割任务中展现卓越性能。相比之前的MaskFormer,Mask2Former实现效果提升与计算简化,在Cityscapes全景分割任务中表现突出,充分展示了其在图像分割中的应用潜力。
segformer-b1-finetuned-cityscapes-1024-1024 - SegFormer模型在语义分割中的高效应用
CityscapesGithubHugging FaceHuggingfaceSegFormerTransformer图像分割开源项目模型
SegFormer模型在CityScapes数据集上进行了微调,使用Transformer结构和轻量级MLP解码头实现高效的图像语义分割。适用于图像分割领域的研究者和开发者,可通过Python代码轻松使用。该模型支持高分辨率图像处理,展示了Transformer的潜力。
Pytorch-Medical-Segmentation - 基于PyTorch的医学图像分割框架 支持2D和3D多模态分析
GithubPytorch医学图像分割开源项目深度学习神经网络
Pytorch-Medical-Segmentation是一个开源医学图像分割框架,支持2D和3D多模态分析。该项目集成多种先进算法,兼容主流医学影像格式,提供灵活配置选项。内置训练推理流程和评估指标,便于研究人员和开发者快速实现各类医学图像分割任务。
segment-anything-video - MetaSeg 开源图像和视频分割框架
GithubMetaSegSegment Anything图像分割开源项目深度学习计算机视觉
MetaSeg是Segment Anything模型的封装版本,提供自动和手动图像视频分割功能。该项目支持多种预训练模型,可与SAHI和FalAI等工具集成,实现物体分割。MetaSeg支持pip安装,提供丰富的API接口,适用于图像分析和处理任务。
lang-seg - 语言驱动的零样本语义图像分割模型
CLIPGithubLSeg开源项目计算机视觉语义分割零样本学习
LSeg是一种语言驱动的语义图像分割模型,结合文本编码器和Transformer图像编码器。它能将描述性标签与图像像素对齐,实现高效零样本分割。LSeg在多个数据集上表现出色,无需额外训练即可泛化到新类别。该模型在固定标签集上可与传统算法媲美,为语义分割任务提供了灵活有力的解决方案。
SegmentAnythingin3D - NeRF模型的三维目标分割框架SA3D
3D分割GithubNeRFSA3DSAM开源项目计算机视觉
SA3D是一个创新的三维目标分割框架,基于神经辐射场(NeRF)模型。它允许用户通过单一视图的手动提示,快速获取目标对象的3D分割结果。SA3D支持点提示和文本提示输入,处理时间约为2分钟。该框架在建筑、室内场景和复杂物体等多种应用场景中展现了良好的适应性,为3D场景感知和虚拟现实内容创作提供了新的可能。项目还包含直观的图形界面,便于研究人员和开发者进行快速实验和应用开发。
control_v11p_sd15_seg - 利用图像分割提高Stable Diffusion模型的控制策略
ControlNetGithubHuggingface人工智能图像分割图像生成开源项目扩散模型模型
ControlNet最新版本利用图像分割为预训练的扩散模型提供条件控制,具备在小数据集上进行端到端任务学习的能力,具有强大的鲁棒性。结合Stable Diffusion v1.5,该模型通过分割图提供附加条件,丰富控制方法。可在个人设备和大型计算集群上处理不同规模的数据,提升训练效率。
ffcv-imagenet - 高效ImageNet训练框架提升模型性能
GithubImageNetPyTorchResNetffcv开源项目深度学习
ffcv-imagenet是一个高效的ImageNet训练框架,采用单文件PyTorch脚本实现。该项目能在标准方法1/10的时间内达到相同精度,支持多GPU并行和多模型同时训练。框架提供丰富的配置选项,结合FFCV数据加载和优化训练流程,使研究人员能更快迭代实验并获得高质量模型。项目还包含多种预设配置,适用于不同的训练需求和硬件环境。
MegEngine - 高效、可扩展且易于使用的深度学习框架
GithubMegEngine开源项目深度学习框架硬件需求训练与推理高性能
MegEngine是一个高效、可扩展且易于使用的深度学习框架,具有统一的训练和推理框架、低硬件要求和跨平台高效推理的三大关键特性。支持x86、Arm、CUDA、RoCM等多种平台,兼容Linux、Windows、iOS、Android等系统。通过DTR算法和Pushdown内存规划器,大幅降低GPU内存使用。适用于模型开发到部署的各个环节,致力于构建开放友好的AI社区。
mmagic - 继承自MMEditing和MMGeneration的先进AIGC工具箱,支持广泛的图像与视频编辑生成任务
GithubMMEditingMMGenerationMMagic图像生成多模态智能创作开源项目
MMagic是一个继承自MMEditing和MMGeneration的先进AIGC工具箱。本项目基于OpenMMLab 2.0框架,支持广泛的图像与视频编辑生成任务,包括GAN和CNN的算法应用、稳态扩散技术等。MMagic为研究人员和AI爱好者提供灵活的实验平台,并促进创新的研究与开发。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号