Project Icon

RUL

Transformer和AttMoE网络在锂电池剩余寿命预测中的应用

本项目探索了Transformer和AttMoE网络在锂电池剩余寿命预测领域的应用。研究基于NASA和CALCE数据集进行实验,展示了详细的实验结果和模型架构。项目分析了dropout和noise_level参数对模型性能的影响,并提出了优化建议。代码采用PyTorch实现,并提供了相关学术文献引用。此外,项目还整理了多个锂电池寿命预测研究的相关资源,为该领域的研究人员提供了comprehensive参考。项目内容包括模型图示、实验结果可视化以及代码包依赖说明。研究者可以通过提供的邮箱地址与作者进行进一步交流。项目持续更新,最新增加了AttMoE相关内容和预测图表。

AiLearning-Theory-Applying - 人工智能领域的全面学习资源
AiLearning-Theory-ApplyingGithubTransformer开源项目机器学习深度学习自然语言处理
AiLearning-Theory-Applying项目提供人工智能领域的全面学习资源,覆盖基础知识、机器学习、深度学习及自然语言处理。项目持续更新,附带详尽注释和数据集,便于理解与操作,助力初学者及研究人员迅速掌握AI理论及应用实践。
recurrent-memory-transformer - 记忆增强型Transformer为Hugging Face模型提升长序列处理能力
GithubHugging FaceRecurrent Memory Transformer开源项目机器学习模型自然语言处理长文本处理
Recurrent Memory Transformer (RMT)是为Hugging Face模型设计的记忆增强型循环Transformer。通过在输入序列中添加特殊记忆标记,RMT实现了高效的记忆机制,能够处理长达1M及以上的token序列。项目提供RMT实现代码、训练示例和评估工具,在BABILong等长文本基准测试中表现优异,为研究长序列处理提供了有力支持。
transformer-debugger - 深入洞察小型语言模型行为的自动化调试工具
GithubTransformer Debugger开源项目神经元查看器稀疏自编码器自动可解释性语言模型
Transformer Debugger是一款由OpenAI超级对齐团队开发的工具,专门用于分析小型语言模型的特定行为。该工具结合了自动化解释技术和稀疏自编码器,无需编写代码即可快速探索模型行为。它能识别影响特定行为的关键组件,自动生成解释,并追踪组件间的连接,从而揭示神经元回路。通过支持对前向传播的干预和观察,Transformer Debugger为研究人员提供了深入分析语言模型内部机制的强大功能。
awesome-time-series - 时间序列预测与分析的全面资源汇总
GithubTransformer图神经网络开源项目异常检测时间序列预测深度学习
本项目汇集了时间序列预测领域的最新论文、代码和相关资源。内容涵盖M4竞赛、Kaggle时间序列竞赛、学术研究、理论基础、实践工具和数据集等。为研究人员和从业者提供全面的参考资料,促进时间序列预测技术的深入研究与应用。
x-transformers - 轻量级Transformer模型,支持完整的编解码器配置和最新研究成果,适合各种从图像分类到语言模型的应用
Githubtransformerx-transformers开源项目模型训练编码器编解码器
x-transformers提供了多功能的Transformer模型,支持完整的编解码器配置和最新研究成果,适合各种应用,从图像分类到语言模型。其先进技术如闪存注意力和持久内存,有助于提高模型的效率和性能。此项目是研究人员和开发者的理想选择,用于探索和优化机器学习任务中的Transformer技术。
h-transformer-1d - 高效序列学习的分层注意力变换器实现
GithubH-Transformer-1DTransformer序列学习开源项目神经网络长程注意力
H-Transformer-1D是一个开源项目,实现了基于分层注意力机制的Transformer模型。这种实现使序列学习达到亚二次方复杂度,在Long Range Arena基准测试中表现优异。项目支持可变序列长度、可逆性和令牌移位等功能,适用于长序列数据处理。该实现主要提供编码器(非自回归)版本,为自然语言处理和机器学习领域提供了新的研究方向。
transformerlab-app - 多功能大语言模型实验平台 支持本地操作和微调
GithubTransformer Lab人工智能开源软件开源项目模型训练语言模型
Transformer Lab是一个功能丰富的大语言模型实验平台。该应用支持一键下载多种流行模型、跨硬件微调、RLHF优化等功能。平台提供模型聊天、评估和RAG等交互方式,并具备REST API、云端运行和插件系统。Transformer Lab适用于多种操作系统,为AI研究和开发提供了便捷的工具。
MTR - 自动驾驶多模态运动预测的先进框架
GithubMotion TransformerWaymo数据集多模态运动预测开源项目神经网络自动驾驶
MTR项目是一个创新的多模态运动预测框架,专为自动驾驶场景设计。它通过全局意图定位和局部运动细化的联合优化来进行运动预测,采用可学习的运动查询对处理不同的运动模式。在Waymo开放运动数据集的评测中,MTR在边缘和联合运动预测任务上均表现出色,位居排行榜首位。该框架以其简洁性、高效性和准确性为自动驾驶领域的多模态运动预测提供了一个有力的基准。
recurrent-memory-transformer-pytorch - Recurrent Memory Transformer的PyTorch实现助力超长序列处理
GithubPyTorchRecurrent Memory Transformer人工智能开源项目深度学习自然语言处理
Recurrent Memory Transformer的PyTorch实现项目致力于解决超长序列处理问题。该模型通过创新的记忆机制和高效注意力机制,可处理长达百万token的序列。项目提供简便的安装使用方法,支持XL记忆和记忆回放反向传播等先进功能。这一实现在长序列处理、因果推理和强化学习等领域展现出优异性能,为AI研究和应用开发提供了实用工具。
transformer-models - MATLAB深度学习变换器模型实现库
BERTGithubMATLABTransformer开源项目深度学习自然语言处理
该项目提供MATLAB环境下的多种深度学习变换器模型实现,包括BERT、FinBERT和GPT-2。支持文本分类、情感分析、掩码标记预测和文本摘要等自然语言处理任务。项目特点包括预训练模型加载、模型微调、详细示例和灵活API,可用于研究和实际应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号