Project Icon

MEEE

模型集成探索与利用强化学习算法

MEEE是一个开源项目,提出了基于模型集成的探索与利用方法,旨在提高强化学习的样本效率。该项目基于MBPO代码库开发,实现了相关论文中的实验。MEEE提供了详细的安装说明、使用指南和日志记录方法,支持在MuJoCo环境中进行实验。通过创新的模型集成策略,MEEE平衡了探索和利用,有效提升了强化学习算法的性能和效率。

AgileRL - 革新强化学习的高效开发框架
AgileRLGithub开源项目强化学习机器学习超参数优化进化算法
AgileRL是一个创新的深度强化学习库,专注于提升强化学习的开发效率。通过引入RLOps概念,该库显著缩短了模型训练和超参数优化的时间。AgileRL采用进化超参数优化技术,自动找到最优超参数,减少了大量训练运行。它支持多种先进的可进化算法,包括单智能体、多智能体、离线学习和上下文多臂赌博机,并具备分布式训练能力。相比传统方法,AgileRL在超参数优化速度上实现了10倍的提升。
Eureka - 基于大型语言模型的人类级奖励设计算法
EurekaGithub大语言模型奖励设计开源项目强化学习机器人控制
Eureka是一种基于大型语言模型的人类级奖励设计算法,利用GPT-4等先进LLM进行奖励代码的进化优化。在29个开源强化学习环境中,Eureka在83%的任务上超越人类专家,平均提升52%。该算法还实现了无梯度人类反馈强化学习方法,并首次展示了能以人类速度旋转笔的五指Shadow Hand仿真。
Multi-LLM-Agent - 多模型协作系统提升小型语言模型工具学习效能
GithubMulti-LLM Agentα-UMi人工智能大语言模型工具学习开源项目
α-UMi是一个创新的多模型协作系统,将语言模型能力分解为规划、调用和总结三个组件。通过全局到局部的渐进式微调策略和灵活的提示设计,该系统显著提升了小型语言模型在工具学习任务中的表现,甚至超越了某些大型闭源模型。α-UMi为复杂AI任务提供了新的高效解决方案。
MixtralKit - 模型推理工具包
GithubMixtral ModelMixtralKitOpenCompass开源项目性能比较模型架构
MixtralKit是一款高效的模型推理工具包,支持多种评估工具和资源。采用MoE架构提升性能和效率,Mixtral-8x7B模型表现卓越,并附有详细的安装和推理指南,方便研究人员和开发者快速上手。
soft-moe-pytorch - PyTorch 实现的软专家混合模型框架
GithubPytorchSoft MoE专家混合开源项目深度学习神经网络
soft-moe-pytorch 项目实现了基于 PyTorch 的软专家混合 (Soft MoE) 模型。该模型支持非自回归编码器,可用于文本到图像等任务。项目特点包括灵活设置专家数量、动态分配插槽,以及与 Transformer 架构兼容。这一工具为深度学习研究和开发提供了高效、可扩展的 MoE 模型实现,有助于提升模型性能。
AI-Optimizer - 涵盖从无模型到基于模型,从单智能体到多智能体的多种算法的多功能深度强化学习平台
AI-OptimizerGithub多智能体强化学习开源项目深度强化学习离线强化学习自监督学习
AI-Optimizer是一款多功能深度强化学习平台,涵盖从无模型到基于模型,从单智能体到多智能体的多种算法。其分布式训练框架高效便捷,支持多智能体强化学习、离线强化学习、迁移和多任务强化学习、自监督表示学习等,解决维度诅咒、非平稳性和探索-利用平衡等难题,广泛应用于无人机、围棋、扑克、机器人控制和自动驾驶等领域。
ArmoRM-Llama3-8B-v0.1 - 多目标奖励模型助力AI决策优化
ArmoRMGithubHuggingfaceLlama3Mixture-of-Experts多目标奖励奖励建模开源项目模型
该项目介绍了一种名为ArmoRM-Llama3-8B-v0.1的多目标奖励模型,通过专家混合(MoE)方法提升AI在多任务环境中的决策准确性。ArmoRM模型在性能榜中表现突出,特别是在聊天、复杂推理和安全性领域的评分名列前茅。模型通过对大量数据进行细致训练,旨在减少冗长偏差,并利用奖励转换矩阵优化结果。项目为AI和机器学习研究者提供了易用的代码示例和操作流程,展示如何结合多目标系数实现线性偏好评分,提供了一种高效、灵活的方法以调整语言模型的响应特征和优先级。
MNN - 高效轻量的深度学习框架,支持多设备推理和训练
GithubMNN开源项目推理引擎深度学习框架轻量级高性能
MNN是一个高效轻量的深度学习框架,支持设备上的推理和训练。已被阿里巴巴30多个应用集成,覆盖直播、短视频、搜索推荐等70多种场景。MNN适用于嵌入式设备,支持TensorFlow、Caffe、ONNX等多种模型格式,并优化了ARM和x64 CPU及多种GPU的计算性能。通过MNN Workbench,用户可以下载预训练模型、进行可视化训练并一键部署到设备上。
ibc - 隐式行为克隆算法在机器人策略学习中的创新应用
GithubImplicit Behavioral Cloning人工智能开源项目机器人策略学习能量模型行为克隆
IBC项目提出的隐式行为克隆算法在机器人策略学习中表现优异。该方法善于处理复杂、不连续和多值函数,适用于高维动作空间和视觉输入场景。在D4RL基准测试中,IBC在人类专家任务上与顶尖离线强化学习方法相当。实际应用中,IBC能让机器人学习复杂精细行为,应对高组合复杂性和毫米级精度任务。
LLM-RLHF-Tuning - RLHF三阶段训练支持指令微调、奖励模型和多种训练方式
DPOGithubLLaMALLaMA2PPORLHF开源项目
本项目实现了RLHF的三阶段训练,包括指令微调、奖励模型训练和PPO算法训练。支持LLaMA和LLaMA2模型,并提供多种分布式加速训练方法。项目附有详细的实现文档,并对比了其他开源框架的功能,是RLHF训练的宝贵资源。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号