Project Icon

UAV_Obstacle_Avoiding_DRL

深度强化学习驱动的无人机自主避障算法研究

本项目研究了深度强化学习在UAV自主避障中的应用,涵盖静态和动态环境。研究结合多智能体强化学习、人工势场法和扰动流场算法等创新技术,并与A*、RRT等传统路径规划方法进行对比。项目实现了MADDPG、TD3、PPO等多种算法,提供MATLAB和Python代码。仿真实验表明,深度强化学习方法在无人机障碍物避免任务中展现出优越性能,为自主导航技术发展提供了新思路。

Practical_RL - 强化学习开源课程:实用技巧与实践
GithubGoogle ColabHSEPractical_RLYSDA开源项目强化学习
Practical_RL是一个专注于强化学习实用性的开源课程,提供HSE和YSDA的课堂教学及线上学习支持,涵盖英语和俄语材料。课程从基础理论到实践应用,包括价值迭代、Q学习、深度学习、探索策略、策略梯度方法、序列模型及部分观察MDP等内容。学生可以通过GitHub改进课程,使用Google Colab或本地环境进行实践。适合希望在实际问题中应用强化学习的学生和研究者。
AI-Optimizer - 涵盖从无模型到基于模型,从单智能体到多智能体的多种算法的多功能深度强化学习平台
AI-OptimizerGithub多智能体强化学习开源项目深度强化学习离线强化学习自监督学习
AI-Optimizer是一款多功能深度强化学习平台,涵盖从无模型到基于模型,从单智能体到多智能体的多种算法。其分布式训练框架高效便捷,支持多智能体强化学习、离线强化学习、迁移和多任务强化学习、自监督表示学习等,解决维度诅咒、非平稳性和探索-利用平衡等难题,广泛应用于无人机、围棋、扑克、机器人控制和自动驾驶等领域。
DeepLearningFlappyBird - 使用深度Q网络训练AI玩Flappy Bird游戏
Deep Q-NetworkFlappy BirdGithubPython卷积神经网络开源项目深度强化学习
该项目演示了如何使用深度Q学习算法在Flappy Bird游戏中进行应用。项目利用Python、TensorFlow和OpenCV等技术,详细讲解了如何通过卷积神经网络处理游戏画面并优化游戏策略,使AI智能体可以自学并在游戏中取得高分。内容包括游戏画面的预处理、网络结构的设计、训练过程的参数调整以及常见问题的解决方案。此项目适合对深度强化学习有兴趣的开发者和研究人员参考。
pytorch-rl - Pytorch中的深度强化学习算法实现
GithubOpenAI GymPytorch开源项目强化学习机器人任务深度学习
pytorch-rl项目在Pytorch中实现了多种深度强化学习算法,适用于连续动作空间。用户可以在CPU或GPU上高效训练这些算法,并与OpenAI Gym无缝集成。支持的算法包括DQN、DDPG、PPO等,涵盖环境建模和参数空间噪声探索等功能。
irl-imitation - 逆强化学习算法在Python和Tensorflow中的实现
GithubInverse Reinforcement LearningPythonTensorFlow开源项目强化学习算法实现
该项目实现了多种逆强化学习(IRL)算法,包括线性逆强化学习、最大熵逆强化学习和深度最大熵逆强化学习,基于Python和Tensorflow。支持在2D和1D网格世界中的应用。项目依赖于Python 2.7、cvxopt、Tensorflow 0.12.1和matplotlib,通过代码示例和命令行选项,有助于快速理解和使用这些算法。为逆强化学习领域的研究者提供了重要的参考资源。
HighwayEnv - 多场景自动驾驶模拟与决策训练环境
Githubhighway-env决策系统开源项目强化学习环境仿真自动驾驶
HighwayEnv是一个自动驾驶和决策任务模拟环境集。它包含高速公路、环岛、停车场和十字路口等多种场景,模拟真实驾驶情况。支持DQN、DDPG和MCTS等多种强化学习算法,便于研究人员开发和测试自动驾驶策略。该项目具有良好的可用性和扩展性,适用于自动驾驶研究和教学。
Safe-Reinforcement-Learning-Baselines - 综合安全强化学习研究资源库
GithubSafe Reinforcement Learning基准测试安全强化学习开源项目环境算法
Safe-Reinforcement-Learning-Baselines项目汇集了安全强化学习领域的多种基线算法和基准环境,涵盖单智能体和多智能体场景。该资源库提供环境支持、算法实现、相关调查、学术论文和教程等全面内容,为研究人员提供系统性的安全强化学习工具和参考资料,促进该领域的持续发展和创新。
safe-control-gym - 安全控制与强化学习的物理仿真平台
Githubsafe-control-gym仿真环境安全约束开源项目强化学习机器人控制
'safe-control-gym'是一个开源的基于物理的仿真平台,为学习控制和强化学习研究提供CartPole和Quadrotor环境。该平台支持符号化先验动力学,实现多种扰动和约束条件,集成了多种控制器和安全过滤器。研究人员可利用此平台测试控制方法的鲁棒性和泛化能力,探索安全学习和控制领域的创新。
AgileRL - 革新强化学习的高效开发框架
AgileRLGithub开源项目强化学习机器学习超参数优化进化算法
AgileRL是一个创新的深度强化学习库,专注于提升强化学习的开发效率。通过引入RLOps概念,该库显著缩短了模型训练和超参数优化的时间。AgileRL采用进化超参数优化技术,自动找到最优超参数,减少了大量训练运行。它支持多种先进的可进化算法,包括单智能体、多智能体、离线学习和上下文多臂赌博机,并具备分布式训练能力。相比传统方法,AgileRL在超参数优化速度上实现了10倍的提升。
Gymnasium-Robotics - 基于Gymnasium和MuJoCo的强化学习机器人环境库
GithubGymnasiumMuJoCoPython开源项目强化学习机器人环境
Gymnasium-Robotics是一个强化学习机器人环境库,基于Gymnasium API和MuJoCo物理引擎开发。它提供多种机器人环境,包括Fetch机械臂、Shadow灵巧手等,并支持多目标API。该项目还集成了D4RL环境,如迷宫导航和Adroit机械臂。Gymnasium-Robotics为研究人员提供丰富的机器人操作任务,有助于开发和测试强化学习算法。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号