Project Icon

imbalanced-ensemble

专注类别不平衡的Python集成学习库

imbalanced-ensemble是一个针对类别不平衡数据的Python集成学习库。该库提供15种以上的集成不平衡学习算法和19种采样方法,特点包括易用API、优化性能和强大可视化功能。完全兼容scikit-learn和imbalanced-learn,支持二分类和多分类任务。imbalanced-ensemble适用于类别不平衡集成学习模型的快速实现、修改、评估和可视化。

imbalanced-learn - Python库解决机器学习不平衡数据问题
Githubimbalanced-learnscikit-learn开源项目数据不平衡机器学习重采样技术
imbalanced-learn是一个Python库,专门解决机器学习中的数据不平衡问题。它提供了多种重采样技术,如过采样、欠采样和组合方法,以获得更公平和稳健的模型。该库与scikit-learn完全兼容,使用简单,并提供详细文档和示例。作为scikit-learn-contrib项目的一部分,imbalanced-learn为数据科学家和机器学习工程师提供了处理不平衡数据集的有力工具。
awesome-imbalanced-learning - 解决分类问题中的类别失衡,精选学习资源与开源工具
Class-imbalanceGithubensemble learningimbalanced learning代码库开源项目文献
项目提供精选的类别失衡学习相关论文、代码和库,旨在解决分类问题中的类别不平衡。资源涵盖多种编程语言和研究领域,按编程语言和研究领域分类。项目持续更新,并引入了新包imbalanced-ensemble,适合从事欺诈检测、稀有副作用预测等研究的人员使用。
self-paced-ensemble - 自适应集成学习框架解决高度不平衡数据分类
GithubPython库Self-paced Ensemble不平衡数据分类开源项目机器学习集成学习
Self-paced Ensemble (SPE)是一个处理大规模高度不平衡数据分类的集成学习框架。SPE采用严格平衡的欠采样策略,无需计算样本间距离,适用于各类数据集。该框架计算高效,性能优异,可与多种学习模型兼容。作为通用框架,SPE能提升现有方法在不平衡数据上的表现,特别适合处理噪声大、极度不平衡的大规模数据集。
Ensemble-Pytorch - PyTorch集成学习框架助力模型优化
Ensemble-PyTorchGithubpytorch开源项目机器学习模型集成深度学习
Ensemble-Pytorch是一个为PyTorch设计的集成学习框架,旨在提高深度学习模型的性能和鲁棒性。该框架支持多种集成策略,如Fusion、Voting、Bagging和Gradient Boosting,适用于分类和回归任务。作为PyTorch生态系统的一部分,Ensemble-Pytorch提供简洁的API和详细文档,便于研究人员和开发者实现和优化集成模型。
imodels - 一款提供易用且兼容的透明、简洁预测模型的集成scikit-learn的Python库
GithubPythonimodelsscikit-learn开源项目机器学习解释模型
imodels,一款集成scikit-learn的Python库,提供易用且兼容的透明、简洁预测模型。它应用最新的解释性模型技术,旨在提高机器学习的计算效率和预测精准度。包含imodelsX模块以支持NLP领域,且拥有完善的教程和文档,满足多样化应用需求。
scikit-learn - Python机器学习的核心工具库
GithubPythonscikit-learn开源项目数据科学机器学习
scikit-learn是基于SciPy构建的Python机器学习库,提供高效的数据挖掘和分析工具。支持分类、回归、聚类等多种机器学习任务,自2007年启动以来由志愿者维护,已成为广受欢迎的开源项目。其特点包括易用性、高性能和完善的文档,在学术和工业领域得到广泛应用。
tslearn - Python时间序列分析机器学习库
GithubPython库tslearn开源项目数据预处理时间序列分析机器学习
tslearn是一个开源的Python库,专注于时间序列分析和机器学习。它提供数据预处理、分类、聚类、回归和多种距离度量方法。支持可变长度时间序列,兼容scikit-learn,包含UCR数据集和数据生成器。tslearn适用于需要进行时间序列分析的数据科学工作,支持超参数调优和管道等功能,为研究和实践提供全面工具支持。
sktime - 多功能时间序列分析和预测库
GithubPython库sktime开源项目时间序列分析机器学习统一接口
sktime是一个开源的Python时间序列分析库,为多种时间序列学习任务提供统一接口。它支持时间序列分类、回归、聚类、标注和预测等功能,并提供专门的时间序列算法和兼容scikit-learn的工具。sktime还整合了多个相关库的接口,便于用户在不同时间序列任务间迁移算法。
imodelsX - 多功能文本模型分析与优化库
GithubimodelsX可解释性开源项目文本模型机器学习自然语言处理
imodelsX是一个与Scikit-learn兼容的Python库,专注于文本模型和数据的解释、预测和优化。该库集成了多种可解释的建模技术,包括Tree-Prompt、iPrompt和Aug-Linear等。imodelsX还提供LLM封装器和数据集封装器等实用工具,简化文本数据处理流程。通过支持多种解释方法,imodelsX能够生成自然语言解释,并为用户提供易于实现的基线模型。
mlxtend - Python机器学习日常任务扩展库
GithubPython库mlxtend开源软件开源项目数据科学机器学习
mlxtend扩展了Python的机器学习功能,专注于提供数据科学日常任务中的实用工具。库中包含多种分类器、集成方法和决策区域可视化功能。它支持pip和conda安装,适合机器学习研究和实践。mlxtend提供详细文档和示例,有助于简化数据科学工作流程。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号