Project Icon

imbalanced-ensemble

专注类别不平衡的Python集成学习库

imbalanced-ensemble是一个针对类别不平衡数据的Python集成学习库。该库提供15种以上的集成不平衡学习算法和19种采样方法,特点包括易用API、优化性能和强大可视化功能。完全兼容scikit-learn和imbalanced-learn,支持二分类和多分类任务。imbalanced-ensemble适用于类别不平衡集成学习模型的快速实现、修改、评估和可视化。

fairlearn - AI系统公平性评估与缓解的Python工具
AI公平性FairlearnGithubPython包公平性算法公平性评估开源项目
Fairlearn是一个Python包,帮助开发者评估和缓解AI系统中的不公平问题。它提供缓解算法和模型评估指标,并附有Jupyter笔记本示例。Fairlearn侧重于群体公平性,评估并比较模型对不同群体的影响,提供多种解决不公平问题的策略,使用户在不同AI任务中找到最佳平衡。
pattern_classification - 机器学习和模式分类资源集合
Github开源项目数据预处理机器学习模型评估模式分类聚类分析
该项目汇集了机器学习和模式分类领域的全面资源。内容包括教程、示例代码、数据集、工具和技术说明等。涵盖数据预处理、特征选择、多种算法实现等方面。还提供数据可视化案例、统计模式分类研究、相关书籍和讲座资料。适合学习和应用机器学习技术的研究者和从业者参考使用。
yggdrasil-decision-forests - 用于训练、评估、解释和部署随机森林、梯度提升决策树和 CART 决策森林模型的完整库
CART决策森林GithubYDFYggdrasil Decision Forests开源项目梯度增强决策树随机森林
YDF 是一个用于训练、评估、解释和部署随机森林、梯度提升决策树和 CART 决策森林模型的完整库。支持 Python 和 C++ API,方便模型的训练、分析、预测及保存。详尽的文档和教程有助于用户快速入门,是开发高效、可解释机器学习模型的好工具。
Data-science - 数据科学项目的综合资源库和实践指南
GitHubGithubMLOpsPython开源项目数据科学机器学习
Data-science项目汇集了丰富的数据科学资源,涵盖MLOps、数据管理、测试和生产力工具等领域。通过文章、代码和视频教程,该项目全面展示了数据科学工作流程,从项目管理到部署。它为数据科学家和机器学习工程师提供了提高效率、构建可靠项目的实用指南。
dask - 开源灵活的并行计算库 助力大规模数据分析
DaskGithubPython库并行计算开源开源项目数据分析
Dask是一个开源的灵活并行计算库,专为大规模数据分析设计。它支持多种数据结构和算法,与NumPy、Pandas等Python数据科学工具无缝集成。Dask提供高效的并行计算能力,能处理超出单机内存的大型数据集,适用于数据科学、机器学习等领域。活跃的社区支持进一步增强了其在数据分析中的应用价值。
ngboost - 自然梯度提升的概率预测Python库
GithubNGBoostPython库开源项目机器学习概率预测自然梯度提升
NGBoost是一个基于自然梯度提升的Python库,专注于概率预测。该库构建于Scikit-Learn之上,提供可扩展和模块化的设计,支持多种评分规则、分布和基础学习器。NGBoost适用于回归和分类任务,提供直观的API和丰富的文档。它特别适合需要不确定性估计的机器学习项目,是数据科学领域的实用工具。
eurybia - 开源Python库助力数据和模型偏移检测
EurybiaGithubPython库开源项目数据漂移机器学习模型漂移
Eurybia是一个Python开源库,专注于检测数据和模型偏移,并在模型部署前进行数据验证。该工具生成详细的HTML报告,支持模型性能监控、AI系统审核和治理优化。通过直观的可视化和动态报告,Eurybia简化了数据特征和偏移分析,促进了团队协作和跨部门沟通。
SynapseML - 简化大规模机器学习管道的开源工具
Apache SparkGithubSynapseML开源项目异常检测文本分析机器学习
SynapseML是一个开源库,旨在简化大规模机器学习管道的创建。它提供简单、可组合和分布式的API,支持文本分析、视觉处理、异常检测等多种任务。基于Apache Spark,SynapseML与SparkML/MLLib共享相同的API,能够无缝集成到现有的Spark工作流中。该库支持Python、R、Scala、Java和.NET,适用于各种数据库和云数据存储,助力构建智能系统。
ILearnDeepLearning.py - 深度学习和数据科学的开源实践项目集
GithubILearnDeepLearning.pyMedium开源项目数据科学深度学习神经网络
此开源项目库集合了多个与深度学习和数据科学相关的小项目,通过实际操作帮助用户理解复杂的神经网络问题。内容包括详细的代码示例和可视化展示,涵盖梯度下降、神经网络数学原理、过拟合分析、优化器选择、卷积神经网络理论及自定义对象检测模型的训练等。适合希望深入了解和实践深度学习技术的用户,内容实用且丰富。
pyod - 用于多变量数据异常检测的强大的Python工具库
GithubPyODPython库多元数据开源项目异常检测算法
PyOD是Python领域应用广泛的异常检测工具库,自2017年起支持学术与商业用途。这个库集成了超过50种算法,涵盖从经典方法到最新的深度学习技术。它提供统一的操作界面,高性能的处理效率和快速训练预测功能,已被下载超过1700万次,得到了机器学习领域的广泛认可。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号