Project Icon

rugpt3small_based_on_gpt2

俄语预训练语言模型基于GPT-2架构

rugpt3small_based_on_gpt2是SberDevices团队开发的俄语预训练语言模型。基于GPT-2架构,该模型在80B个token上训练约3轮,序列长度为1024,并进行了2048上下文长度的微调。训练过程耗时一周,使用32个GPU。该模型为俄语自然语言处理提供了坚实基础,其详细设计和评估已在相关论文中记录。

rugpt3large_based_on_gpt2 - 俄语Transformer模型SberDevices团队的训练与评估
GithubHuggingfaceSberDevicesTransformerrugpt3large_based_on_gpt2开源项目模型语言模型预训练模型
SberDevices团队开发的俄语Transformer模型,基于PyTorch进行训练,使用80B个标记在1024序列长度下进行3轮训练,接着进行2048长度的微调。整个过程耗时14天,最终在测试集上的困惑度为13.6,为俄语处理提供了新的可能性。
ruBert-base - 专为俄语遮蔽填充任务优化的Transformer预训练语言模型
GithubHuggingfacePyTorchTransformersruBert开源项目模型自然语言处理语言模型
ruBert-base是一个专为俄语遮蔽填充任务优化的预训练语言模型。该模型基于Transformer架构,由SberDevices团队开发,采用BPE分词器,词典大小12万token,模型参数量1.78亿。模型使用30GB训练数据,是俄语自然语言处理领域的重要研究成果。ruBert-base遵循Apache-2.0许可证,为俄语NLP应用提供了强大的基础支持。
rubert-tiny2 - 优化的俄语自然语言处理模型
BERTGithubHuggingface俄语模型句子嵌入开源项目文本相似度模型自然语言处理
作为rubert-tiny的改进版本,rubert-tiny2是一个精简的俄语BERT编码器。它拥有更大的词汇表和更长的序列支持,能更好地逼近LaBSE嵌入效果。该模型可直接用于生成句子嵌入或进行下游任务微调,适用于短文本KNN分类等应用场景。通过与transformers和sentence_transformers库的无缝集成,rubert-tiny2为俄语自然语言处理任务提供了简便而强大的工具。
ruRoberta-large - 面向俄语的大规模预训练语言模型 具备强大Transformer架构
GithubHuggingfaceTransformersruRoberta-large俄语开源项目模型自然语言处理预训练模型
ruRoberta-large是SberDevices团队开发的俄语预训练语言模型,采用Transformer架构。模型使用BBPE分词器,词典规模为50,257,参数量达3.55亿,在250GB数据集上训练。主要应用于掩码填充任务,为俄语自然语言处理提供基础支持。该模型是俄语预训练模型家族中的一员,旨在推进俄语NLP研究与应用。
rulm - 俄语语言模型:的实现与性能对比
GPT Role-play RealmGithubRuTurboAlpacaRussianSuperGLUESaigarulm开源项目
此项目展示了俄语语言模型的实现与比较,涵盖DataFest的分享、主要演示和Fine-tuning Colab资源链接。同时介绍了基于ChatGPT生成数据的RuTurboAlpaca和Saiga两个主要数据集,以及相关模型及其训练配置的详细内容。提供了数据集生成脚本和提示。此外,还展示了GPT Role-play Realm的数据集和模型评估结果,包括与GPT4和gpt-3.5-turbo的对比分析。
ruRoPEBert-e5-base-2k - 俄语句子编码模型支持长上下文和高效注意力机制
CulturaXGithubHuggingfaceTransformersruRoPEBert俄语句向量模型开源项目模型
ruRoPEBert是Tochka AI团队基于RoPEBert架构开发的俄语句子编码模型。该模型在CulturaX数据集上训练,支持2048个token的上下文,并可扩展。模型集成高效注意力机制和平均池化层,易于使用。在encodechka基准测试中,ruRoPEBert的S+W评分领先其他模型。此外,它还支持分类任务,并可通过RoPE缩放扩展上下文窗口。
rubert-base-cased - 俄语优化BERT模型简介
BERTGithubHuggingface俄语模型开源项目机器学习模型深度学习自然语言处理
rubert-base-cased是一个针对俄语优化的BERT模型,基于俄语维基百科和新闻数据训练而成。模型采用12层结构,768个隐藏单元,12个注意力头,总计180M参数。它以多语言BERT-base模型为基础,使用俄语子词词汇表进行微调。最新版本支持掩码语言模型(MLM)和下一句预测(NSP)任务,为俄语自然语言处理提供了有力支持。
sbert_large_mt_nlu_ru - 大规模多任务俄语句子嵌入模型
BERTGithubHuggingface俄语模型句子嵌入多任务学习开源项目模型自然语言处理
这是一个基于BERT架构的大规模多任务模型,用于生成俄语句子嵌入。模型采用平均池化策略处理token embeddings,已完成Russian SuperGLUE基准测试验证。通过HuggingFace模型库可实现多句俄语文本的嵌入计算。该模型由SberDevices团队开发,致力于提升俄语自然语言处理能力。
sbert_large_nlu_ru - 俄语句子嵌入专用的大型BERT模型
BERTGithubHuggingfacePyTorch俄语句子嵌入开源项目模型自然语言处理
sbert_large_nlu_ru是SberDevices团队开发的俄语句子嵌入模型。这个基于BERT的大型模型可通过HuggingFace库直接调用,支持平均池化以提升嵌入质量。项目提供了Python示例代码,方便用户快速实现句子嵌入计算。该模型为俄语自然语言处理任务提供了高质量的句子表示,是处理俄语文本的有力工具。
gpt2 - 预训练语言模型与自然语言生成技术
GPT-2GithubHuggingface开源项目文本生成机器学习模型自然语言处理预训练模型
这是一个由OpenAI开发的大规模预训练语言模型,基于Transformer架构,通过自监督学习方式在英文语料上训练。模型核心功能是预测文本序列中的下一个词,可用于文本生成及其他自然语言处理任务。支持ONNX部署,便于开发者进行实际应用开发和模型微调。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号