Project Icon

rugpt3small_based_on_gpt2

俄语预训练语言模型基于GPT-2架构

rugpt3small_based_on_gpt2是SberDevices团队开发的俄语预训练语言模型。基于GPT-2架构,该模型在80B个token上训练约3轮,序列长度为1024,并进行了2048上下文长度的微调。训练过程耗时一周,使用32个GPU。该模型为俄语自然语言处理提供了坚实基础,其详细设计和评估已在相关论文中记录。

optimized-gpt2-250m - 深入解析优化版GPT-2的模型特性与技术实现
GithubHuggingfacetransformers人工智能开源项目机器学习模型模型卡片自然语言处理
optimized-gpt2-250m是一个基于GPT-2架构的优化模型,具备250M参数规模。模型文档涵盖核心技术参数、应用场景、训练方法、性能评估等技术细节,同时阐述了模型局限性与最佳实践。适合开发者了解模型性能并进行实际部署。
gpt2_chinese - 使用15G中文语料和31亿tokens完成GPT2训练教程
GithubHuggingfacegpt2transformerszero_nlp中文开源项目模型训练
该项目使用15G中文语料和31亿个tokens,在单张3090显卡上运行60多小时,成功训练出中文版本的GPT2模型。项目提供教程指导如何使用transformers库实现中文文本生成。
rubert-tiny-sentiment-balanced - 高效分析俄语短文本情感的专业工具
GithubHuggingfaceRuBERT俄语开源项目情感分析文本分类模型自然语言处理
rubert-tiny-sentiment-balanced是一个针对俄语短文本情感分类的微调模型。它将输入文本分为负面、中性和正面三类。该模型在多个平衡的俄语数据集上训练,提供了情感标签、分数和概率分布输出。模型在不同领域的测试集上展现了良好的性能,F1分数从0.50到0.98不等。用户可以通过简单的Python代码集成此模型,用于俄语文本的情感分析任务。
wav2vec2-large-xlsr-53-russian - 基于XLSR-53的俄语语音识别微调模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53俄语开源项目模型语音识别
该项目是一个基于wav2vec2-large-xlsr-53的俄语语音识别微调模型。经Common Voice 6.1和CSS10数据集训练,适用于16kHz采样的语音输入。模型在Common Voice ru测试集上实现13.3%词错误率和2.88%字符错误率,加入语言模型后性能提升至9.57%和2.24%。支持通过HuggingSound库或自定义脚本使用,可应用于多种俄语语音识别场景。
mGPT - 基于GPT架构的大规模多语种自然语言处理模型
GPTGithubHuggingfaceMegatron多语言模型开源项目模型深度学习自然语言处理
作为一个基于GPT-3架构的多语言处理模型,mGPT具备13亿参数量,覆盖25个语系的61种语言。模型采用Wikipedia和Colossal Clean Crawled Corpus作为训练数据,结合Deepspeed与Megatron框架实现并行计算,在低资源语言处理领域达到与XGLM相当的性能水平。模型训练过程中处理了488亿UTF字符,借助256个NVIDIA V100 GPU完成了为期14天的训练。
cross-encoder-russian-msmarco - 高效的俄文跨编码器模型用于信息检索
DeepPavlov/rubert-base-casedDiTy/cross-encoder-russian-msmarcoGithubHuggingface信息检索句子嵌入开源项目文本分类模型
此开源模型基于DeepPavlov/rubert-base-cased,并经过MS-MARCO数据集优化,专用于俄语信息检索,支持高效的查询和段落相关性排序。通过安装sentence-transformers可直接使用,也可通过HuggingFace Transformers扩展文本分类功能,适合需处理俄语复杂文本的用户。
opt-30b - Meta AI开发的开源预训练语言模型GPT-3替代方案
GithubHuggingfaceOPT人工智能开源项目机器学习模型自然语言处理语言模型
OPT是Meta AI推出的Transformer语言模型系列,最大规模达175B参数。模型基于800GB数据训练,包含BookCorpus、CC-Stories等多个数据集,支持文本生成和下游任务微调。其开源性质使研究人员能够深入研究大规模语言模型的性能表现、伦理影响及安全性问题。
german-gpt2 - 开源的德语预训练语言模型
GPT-2GithubHuggingface开源项目德语文本生成机器学习模型自然语言处理
German-GPT2是DBMDZ开发的德语预训练语言模型,基于GPT-2架构构建。模型通过大规模德语语料库训练,采用5万词汇量的字节级BPE编码。项目开源发布,提供便捷的API接口,支持文本生成等自然语言处理任务。作为基础模型,German-GPT2主要用于进一步针对特定任务的微调训练。
rubert-tiny2-cedr-emotion-detection - 俄语情感识别的多标签分类模型
Adam优化器CEDR数据集GithubHuggingfaceRuBERT多标签分类开源项目情感分类模型
该模型基于cointegrated/rubert-tiny2进行微调,适用于俄语文本的多标签情感分类任务。模型在CEDR数据集上经过40个周期的训练,学习率为1e-5,批次大小为64。测试结果显示,模型在愉悦、悲伤、惊讶等情感识别上的表现优异,AUC平均值为0.8956,F1微平均值为0.9280,可用于多种俄语文本情感分析场景。
GPT2 - PyTorch优化实现的自然语言生成模型
GPT-2GithubPyTorch开源项目文本生成深度学习自然语言处理
该项目是OpenAI GPT-2模型的PyTorch实现,提供模型训练、文本生成和指标可视化功能。代码设计兼顾可读性和性能优化,支持多GPU训练、自动混合精度和梯度检查点等特性。项目提供详细的命令行使用说明,并可在Google Colab中进行交互式文本生成和模型评估。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号