Project Icon

AdelaiDepth

开源单目深度预测工具箱 推进3D场景重建研究

AdelaiDepth是开源单目深度预测工具箱,整合3D场景形状重建等多种算法。项目聚焦单一图像深度学习和3D场景恢复,相关成果入围CVPR'21最佳论文。通过提供训练代码和数据集,AdelaiDepth为计算机视觉领域研究提供了重要资源。

stable-zero123-diffusers - 将单一图像智能转换为精确三维模型的AI技术
GithubHuggingfaceZero-1-to-3人工智能内容审核图像生成开源项目模型模型安全
这是一个基于Stable Diffusion技术的开源项目,通过AI将2D图像自动转换为3D模型。项目采用Objaverse数据集训练,主要应用于研究领域,可用于艺术创作、教育和产品设计。该技术虽在文字渲染和人像生成方面存在限制,但为计算机视觉领域带来突破性进展。
CenterSnap - 单镜头多物体3D重建与姿态估计技术
3D重建6D姿态估计CenterSnapGithub多物体检测开源项目计算机视觉
CenterSnap是一个开源的深度学习项目,致力于单镜头多物体3D重建和姿态估计。该技术能在单次拍摄中同时完成多个物体的3D形状重建、6D姿态和尺寸估计。项目提供了完整的训练和推理代码,以及预处理数据集,方便研究人员复现结果和开展进一步研究。CenterSnap在机器人抓取和场景理解等领域有潜在应用价值。
vision3d - PyTorch驱动的开源激光雷达感知库
3D检测GithubLIDAR感知PV-RCNNPyTorchSECOND模型开源项目
Vision 3D是一个基于PyTorch的开源库,专注于激光雷达感知领域。该项目以代码简洁性为核心,便于扩展新模型和数据集。目前已实现SECOND算法,并部分完成PV-RCNN。虽然开发已暂停,但项目仍提供详细文档和示例,支持研究人员和开发者在3D目标检测领域的应用。Vision 3D作为开源工具,欢迎社区贡献,为激光雷达感知研究提供了有价值的资源。
3D-BoundingBox - 使用深度学习与几何方法,实现高效的3D边界框估计
3D Bounding BoxGithubKittiPyTorchYOLOv3开源项目深度学习
项目提供基于PyTorch的深度学习解决方案,通过结合YOLOv3和2D-3D几何转换,实现高效3D边界框估计。主要功能包括下载预训练权重、通过视频和图像数据进行模型推理和训练,依赖PyTorch和其他深度学习库。项目未来计划是在Kitti数据集上训练自定义YOLO网络和姿态可视化。目前版本每帧处理时间约为0.4秒,并计划进一步提升速度。文档中详细介绍了模型训练步骤及实际应用操作。
RGBD-semantic-segmentation - RGB-D语义分割技术发展综述及性能评估
GithubRGBD语义分割开源项目性能对比数据集深度学习评估指标
本项目汇总了RGB-D语义分割领域的最新研究成果,提供详尽的论文列表和性能对比。涵盖NYUDv2等主流数据集的基准结果,包括像素精度、平均精度、mIoU等关键指标。通过定期更新反映该领域最新进展,为计算机视觉研究人员提供全面的参考资源。项目内容还包括数据集介绍、评估指标说明和详细的性能对比表格,全面呈现RGB-D语义分割技术的发展脉络。对于想深入了解该领域的研究人员和工程师而言,这是一个高价值的信息聚合平台。
Awesome-3D-Object-Detection - 3D目标检测研究资源汇总 激光雷达方法全览
3D目标检测Github开源项目深度学习激光雷达自动驾驶计算机视觉
该项目汇总了3D目标检测领域的研究资源,聚焦基于激光雷达的方法。内容包括顶级会议信息、数据集、论文链接等,涵盖从基础到前沿的技术。项目为研究人员提供了解该领域进展的集中平台,是3D目标检测研究的重要参考。
dust3r - 简化几何3D视觉重建的开源项目
3D重建DUSt3RGithub开源项目深度学习计算机视觉
dust3r是一个开源的3D视觉重建项目,旨在简化几何3D视觉处理。该项目提供了一个能够从多张图像重建3D场景的模型。dust3r包含交互式演示功能、API接口和多个预训练模型,可适应不同分辨率和应用场景。项目还提供了训练指南和数据集预处理脚本,方便研究人员进行自定义开发。
mmdetection3d - 支持多模态单模态的开源3D目标检测框架
3D目标检测GithubMMDetection3D开源工具箱开源项目点云处理计算机视觉
MMDetection3D是OpenMMLab项目开发的开源3D目标检测框架,基于PyTorch构建。它支持多模态和单模态检测器,适用于室内外3D检测数据集,可与2D检测无缝集成。该框架提供300多种预训练模型、40多种算法实现,以及MMDetection全部功能模块。MMDetection3D不仅可用于研究,还可作为库支持各类3D检测应用开发。
3d-bat - 全面高效的3D全景数据标注工具箱
3D BATGithub多模态数据开源项目标注工具自动驾驶计算机视觉
3D-BAT是一个开源的3D边界框标注工具箱,专门用于全景多模态数据流的处理。该工具支持AI辅助标注、批量编辑和插值模式等功能,实现了3D到2D的标签转换和自动跟踪。作为基于Web的应用,3D-BAT支持在线访问和跨平台使用,并提供了高度的可定制性。这个工具箱为自动驾驶和计算机视觉等领域的研究提供了一个实用的数据标注解决方案。
shape-of-motion - 从单个视频实现4D场景重建的前沿技术
4D重建GithubShape of Motion单视频重建开源项目深度学习计算机视觉
Shape of Motion项目展示了一种新型4D重建方法,可从单个视频重建动态3D场景。该项目结合深度学习和计算机视觉技术,实现运动物体的精确重建。项目包含完整工作流程,涵盖预处理、模型训练和性能评估。研究团队公开了源代码和数据集,为计算机视觉领域提供了有价值的研究资源。这一技术可能在计算机图形学、增强现实等方面带来应用突破。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号