Project Icon

scandi-nli-large

北欧语言自然语言推理模型的性能分析

该模型针对丹麦语、挪威语和瑞典语进行了自然语言推理微调,适用于零样本分类任务,拥有多个版本。大模型在语言任务中成绩突出,MCC为73.70%,F1分数为74.44%,准确率达83.91%。基于NbAiLab/nb-bert-large模型,并综合多语言NLI数据集进行训练,实现了对北欧语言的全面支持,适用于多语言自然语言处理。

xlm-roberta-large-ner-hrl - 十种多语言命名实体识别模型,覆盖高资源语言
GithubHuggingfacexlm-roberta-large-ner-hrl命名实体识别多语言开源项目数据集模型模型训练
此模型是基于xlm-roberta-large微调的命名实体识别模型,支持十大高资源语言:阿拉伯语、德语、英语、西班牙语、法语、意大利语、拉脱维亚语、荷兰语、葡萄牙语和中文。具备识别地点、组织和人物三类实体的功能。通过Transformers库的pipeline,可便捷地应用于NER任务。训练数据来自特定时间段的新闻文章,虽然适用于多种场景,但在不同领域的推广性有限。
nllb-200-distilled-1.3B - NLLB-200蒸馏模型实现200种语言间高效翻译
GithubHuggingfaceNLLB-200低资源语言多语言开源项目机器翻译模型研究模型
nllb-200-distilled-1.3B是一个蒸馏自NLLB-200的1.3B参数多语言翻译模型,支持200种语言间的翻译。该模型专注于低资源语言的机器翻译研究,在Flores-200数据集上经过BLEU、spBLEU和chrF++等指标评估。它主要用于单句翻译,不适合特定领域文本或长文档。研究人员可通过Fairseq代码库获取使用指南和训练代码。模型仅供研究使用,不适合生产环境部署。
bert-large-uncased - 大规模无大小写区分BERT自然语言处理预训练模型
BERTGithubHuggingface开源项目掩码语言模型模型深度学习自然语言处理预训练模型
bert-large-uncased是基于大规模英文语料预训练的自然语言处理模型。通过掩码语言建模和下一句预测任务,模型学习了双向语言表示。它拥有24层结构、1024维隐藏层和16个注意力头,总计336M参数。该模型适用于序列分类、标记分类和问答等下游任务的微调,也可直接用于掩码填充或作为特征提取器。
distilbert-base-multilingual-cased-ner-hrl - DistilBERT微调的10语种命名实体识别模型
DistilBERTGithubHugging FaceHuggingface命名实体识别多语言模型开源项目模型自然语言处理
这是一个基于DistilBERT微调的多语言命名实体识别模型,支持10种高资源语言。模型能够识别位置、组织和人名实体,适用于阿拉伯语、德语、英语等多种语言。它使用各语言的标准数据集训练,可通过Transformers库轻松调用。尽管在多语言NER任务中表现优秀,但在特定领域应用时可能存在局限性。
bert-base-multilingual-cased-finetuned-langtok - 基于多语言BERT的语言识别模型实现99.03%准确率
BERTGithubHuggingface多语言模型开源项目微调模型自然语言处理语言识别
这是一个基于bert-base-multilingual-cased的语言识别微调模型。模型在评估集上的准确率为99.03%,F1分数达到0.9087。模型采用Adam优化器和线性学习率调度器,经过3轮训练完成。开发框架使用Transformers 4.44.2和PyTorch 2.4.1,可应用于语言识别相关任务。
MobileLLM - 轻量高效的移动设备语言模型
AI模型GithubMobileLLM开源项目深度学习神经网络语言模型
MobileLLM是一个针对移动设备优化的大型语言模型项目。该模型通过SwiGLU激活函数、深窄架构、嵌入共享和分组查询注意力等技术,在亿级参数规模下实现了高性能。MobileLLM在零样本常识推理任务中表现出色,不仅在125M和350M参数规模上超越了现有最先进模型,还成功扩展至600M、1B和1.5B参数规模,展示了其在移动设备应用中的潜力。
llm_benchmarks - 大语言模型评估基准集合
GithubLLM人工智能开源项目机器学习自然语言处理语言理解
llm_benchmarks是一个全面的大语言模型评估基准集合,涵盖知识理解、推理能力、多轮对话和内容摘要等方面。该项目包含MMLU、ARC、GLUE等知名数据集,用于测试模型在不同任务中的表现。这一标准化工具为评估大语言模型性能提供了可靠依据,有助于相关技术的发展与应用。
spark-nlp - 高效自然语言处理与大规模语言模型开源库
Apache SparkGithubSpark NLP开源项目机器学习自然语言处理预训练模型
Spark NLP 是一个基于 Apache Spark 的开源库,提供高效且准确的自然语言处理注释,支持机器学习管道的分布式扩展。该库包含超过 36000 个预训练管道和模型,支持 200 多种语言,涵盖分词、词性标注、嵌入、命名实体识别、文本分类、情感分析、机器翻译等任务。兼容 BERT、RoBERTa 等主流变压器模型,支持 Python、R、Java、Scala 和 Kotlin。
spacy-llm - spaCy与大语言模型整合的NLP组件
GithubLarge Language ModelsNLPOpenAIspaCyspacy-llm开源项目
该模块将大型语言模型(LLMs)集成到spaCy中,实现了快速原型设计和提示生成,无需训练数据即可输出可靠的NLP结果。支持OpenAI、Cohere、Anthropic、Google PaLM、Microsoft Azure AI等API,并兼容Hugging Face上的开源LLMs,如Falcon、Dolly、Llama 2等。还支持LangChain,提供命名实体识别、文本分类、情感分析等多种现成任务。用户可通过spaCy的注册表轻松实现自定义功能。该模块结合LLM的强大功能与spaCy的成熟基础,提供灵活高效的NLP解决方案。
nlp-recipes - 使用最新深度学习模型加速自然语言处理系统开发
Azure Machine LearningBERTGithubNLPtransformers开源项目深度学习
该资源库提供构建NLP系统的示例和最佳实践,重点关注最新的深度学习方法和常见场景,如文本分类、命名实体识别和文本摘要。支持多语言,特别是利用预训练模型应对不同语言任务。内容基于与客户的合作经验,旨在简化开发过程,帮助数据科学家和工程师快速部署AI解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号