Project Icon

data-selection-survey

全面探索语言模型数据选择的关键技术

这个项目全面梳理了语言模型数据选择的各个环节,涵盖预训练、指令微调和偏好对齐等阶段。内容包括语言过滤、启发式方法、数据质量评估和去重等核心技术,还探讨了多语言和特定领域模型的专门选择策略。项目汇集了众多相关研究文献,为语言模型开发提供了系统的参考资源。

Awesome-Tool-Learning - 大型语言模型工具学习研究与应用进展综述
Github人工智能大语言模型工具增强工具学习开源项目自然语言处理
Awesome-Tool-Learning汇集了工具学习领域的精选论文和应用。项目涵盖调查研究、微调、上下文学习等多个方向的最新进展,同时收录英文和中文资源。研究人员和开发者可通过该项目全面了解大型语言模型在工具使用方面的前沿发展。
llm-hallucination-survey - 大语言模型幻觉问题研究综述
Github事实一致性大语言模型幻觉开源项目自相矛盾评估
该项目全面调查了大语言模型中的幻觉问题,涵盖评估方法、成因分析和缓解策略。研究包括输入冲突、上下文冲突和事实冲突等多种幻觉类型,并汇总了相关学术文献。项目成果有助于提升大语言模型在实际应用中的可靠性,为该领域的研究和开发提供重要参考。
SEED-Bench - 多模态大语言模型评估基准
GithubSEED-Bench人工智能基准测试多模态大语言模型开源项目评估维度
SEED-Bench是一个全面评估多模态大语言模型的基准测试。它包含28K个多项选择题,涵盖34个评估维度,包括文本和图像生成能力。该项目提供SEED-Bench-H、SEED-Bench-2-Plus等多个版本,分别针对不同评估方面。SEED-Bench为研究人员提供了一个客观比较多模态大语言模型性能的工具。
llmeval-1 - 系统评估中文大语言模型的创新研究项目
GithubLLMEVAL-1大模型大语言模型评测开源项目排行榜评测方法
LLMEVAL-1项目致力于系统研究大语言模型评价方法。该项目涵盖17个大类、453个问题,内容包括事实性问答、阅读理解和框架生成等多个领域。评测采用分项和对比两种方式,从正确性、流畅性、信息量、逻辑性和无害性五个维度进行。LLMEVAL-1通过结合众包和专业评测,为中文大语言模型提供了全面、客观的评估基准。
Awesome_Multimodel_LLM - 多模态大语言模型资源集锦及研究动态
Github上下文学习多模态大语言模型开源项目思维链指令微调视觉推理
本项目汇集了多模态大语言模型(MLLM)相关资源,涵盖数据集、指令微调、上下文学习、思维链等多个方面。内容持续更新,跟踪MLLM领域最新进展。项目还将发布LLM和MLLM最新研究综述。这是研究人员和开发者了解MLLM前沿动态的重要参考。
LLMs_interview_notes - LLM核心技术与应用实践面试题集锦
GithubLLMslangchain大模型开源项目微调面试
该项目收集整理了大语言模型(LLMs)领域的面试题和学习资料,内容涵盖基础知识、进阶技能、微调方法、LangChain应用等方面。通过详细的问答解析,帮助读者理解LLM的核心概念、训练技巧和参数高效微调等关键技术。项目为准备面试和深入学习大模型技术的人提供了全面实用的参考资源。
applied-ml - 精选数据科学与机器学习应用案例研究和博客
Github开源项目推荐系统数据工程数据质量机器学习特征存储
通过精选的论文、文章和博客,学习企业如何实施数据科学与机器学习项目。了解不同公司对问题的定义、所采用的机器学习技术、背后的科学原理,以及所取得的商业成果,以便更好地评估投资回报。同时还包括最新的机器学习研究进展和实用指南。
RedPajama-Data - 开放大规模多语言数据集助力大型语言模型训练
GithubRedPajama-Data-v2大语言模型开放数据集开源项目数据质量自然语言处理
RedPajama-Data-v2是一个包含30万亿tokens的开放数据集,用于训练大型语言模型。该数据集涵盖了超过100B的文本文档,来源于84个CommonCrawl快照。它包含英语、德语、法语、意大利语和西班牙语5种语言的内容,并提供多种质量信号和去重处理。项目提供完整的数据处理流程,包括准备工件、计算质量信号和去重等步骤,为语言模型研究提供高质量的大规模语料资源。
large_language_model_training_playbook - 大规模语言模型训练指南与实用技巧
GithubLLM Training Playbook大语言模型开源项目张量精度模型并行策略模型架构
此页面提供了大规模语言模型训练的实用指南和资源,涉及模型架构选择、并行策略、模型规模、张量精度、训练超参数设定、最大化吞吐量、稳定性问题、数据处理以及软件和硬件故障调试等主题。这些开放的技巧和工具可以帮助更高效地训练大规模语言模型,并提升其性能和稳定性。
Awesome-LLM-Uncertainty-Reliability-Robustness - 大语言模型的不确定性、可靠性和鲁棒性研究资源集
GithubLLM不确定性可靠性开源项目评估鲁棒性
该项目汇集了大语言模型不确定性、可靠性和鲁棒性相关的研究资源。内容包括模型评估、不确定性估计、校准、幻觉、真实性和推理能力等方面。通过整理这些资料,项目为研究人员和开发者提供了深入了解大语言模型局限性和改进方向的参考。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号