Project Icon

MLQuestions

65个机器学习面试问题助您备战2024年技术面试

MLQuestions项目收录65个机器学习和计算机视觉工程师技术面试问题。涵盖偏差-方差权衡、卷积神经网络等主题,并新增自然语言处理问题。提供在线课程和推荐书籍等准备资源。问题内容包括机器学习基础、深度学习技术和计算机视觉算法,适合求职者全面备战2024年技术面试。

awesome-ml - 机器学习资源库 涵盖语言模型图像视频和音频AI
Github图像模型大语言模型开源项目机器学习视频模型音频模型
该项目是一个综合性机器学习资源集合,包括大型语言模型、图像生成、视频处理和音频AI等领域的开源模型、工具、库和研究资料。适合开发者、研究人员和AI爱好者探索AI技术和应用。项目持续更新,欢迎贡献,为了解和实践机器学习最新进展提供参考。
openmlsys-zh - 现代机器学习系统设计与实现全面指南
GithubOpenMLSys实现经验开源项目机器学习系统设计原理
该开源项目全面介绍现代机器学习系统的设计和实现,涵盖编程接口、计算图、编译器技术、硬件加速等核心内容。同时探讨推荐系统、联邦学习、强化学习等前沿领域的系统实现。项目内容适合学生、研究人员和开发者,有助于读者深入理解机器学习系统,提升实际应用和开发能力。
Machine_Learning_and_Deep_Learning - 完整的机器学习和深度学习学习路径
GithubPython编程开源项目数据分析机器学习深度学习统计学
该项目提供了从Python基础到机器学习算法的全面学习路径,包含多个模块如数据分析、统计和机器学习。通过教程、代码示例和案例研究,帮助学习者掌握数据科学和AI的核心知识。这是一个开源项目,欢迎社区贡献。
t81_558_deep_learning - 深度神经网络的应用
Deep LearningGithubJeff HeatonKerasTensorFlowWashington University开源项目
本课程结合先进训练技术和神经网络架构,使学生能够处理表格数据、图像、文本和音频。内容涵盖经典神经网络、卷积神经网络(CNN)、长短期记忆网络(LSTM)、门控循环单元(GRU)、生成对抗网络(GAN)和强化学习,应用于计算机视觉、时间序列、安全性、自然语言处理(NLP)和数据生成等领域。通过使用Python实现TensorFlow和Keras,课程特别侧重深度学习的实际应用。无需预先了解Python,但需具备基本编程知识。
d2l-zh - 深度学习的全面入门指南
D2L.aiGithub工程技能开源项目数学原理深度学习
《动手学深度学习》是一个免费在线资源,提供概念讲解、数学背景知识和实际代码示例,旨在帮助读者掌握深度学习的原理和应用。该项目致力于培养读者成为能够理解数学原理并实现和改进方法的深度学习应用科学家,适合自学和教学使用,包含可运行的代码和工程技能训练。
Failed-ML - 机器学习项目失败的经典案例总结
Computer VisionForecastingGithubMachine LearningNatural Language ProcessingRecommendation Systems开源项目
本页面收录了多个领域的机器学习项目失败案例,包括经典机器学习、计算机视觉、预测分析、图像生成、自然语言处理和推荐系统。通过这些失败案例,了解项目失败的原因,汲取宝贵经验,避免未来犯同样的错误,为机器学习领域的研究和应用提供重要的反思素材。
ML-Course-Notes - 机器学习和AI课程讲义共享平台
CMU Neural Nets for NLPCS224NCS25GithubMIT 6.S191Machine Learning Specialization开源项目
本项目汇集和分享机器学习、自然语言处理(NLP)及人工智能(AI)的课程讲义。用户可以在平台上协作整理笔记,涵盖从基础到高级的学习内容,包括监督学习、无监督学习、深度学习、生成模型及强化学习等。讲义来自多位知名讲师的热门课程,如Andrew Ng的机器学习课程、MIT的深度学习导论及CMU的神经网络与NLP课程,内容权威且实用。加入社区,共同提升学习效果。
handson-ml - Python机器学习基础与实践指南
GithubJupyterMachine LearningPythonScikit-LearnTensorFlow开源项目
该项目通过Python教授机器学习基本原理,包含《Hands-on Machine Learning with Scikit-Learn and TensorFlow》书中的示例代码和习题解答。用户可以使用Colab、Binder和Deepnote在线体验这些notebooks,或通过Anaconda在本地安装项目进行学习。详细介绍了安装步骤和常见问题解决方法,帮助用户理解和应用机器学习技术。
interview-questions - 全面前端面试题库 涵盖Web基础到高级框架
GithubWeb技术前端开发开源项目框架编程语言面试问题
项目收录了广泛的前端面试题,覆盖Web技术、安全、编程范式、HTML、CSS、JavaScript等多个领域。题目设计专业,解答精炼,既适合求职者复习,也可供面试官参考。额外收录的软技能和实践题目有助于全面评估开发能力。适合初中级开发者快速复习,全面提升面试表现。
start-machine-learning - 入门机器学习与人工智能的免费课程
AI新手教程GithubLouis Bouchard人工智能免费在线课程开源项目机器学习
2024年为希望深入机器学习和人工智能的初学者提供全面指导。即使没有编程、数学或机器学习背景,通过阅读文章、观看视频、参与免费在线课程和不断实践,也可逐步提升专业水平。指南中还涵盖了最新动态和先进技术更新。持续学习和实践,是达成专业精通的必经之路。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号