Project Icon

ml-aim

自回归图像模型预训练的突破性进展

AIM项目开发了一系列采用自回归生成目标预训练的视觉模型。研究发现,图像特征的自回归预训练呈现出与大型语言模型类似的扩展性。该项目能够将模型参数轻松扩展到数十亿级,并能有效处理大规模未筛选的图像数据。AIM提供多种预训练模型,兼容PyTorch、MLX和JAX等多个框架,为计算机视觉领域的研究与应用提供了有力支持。

mar - 创新自回归图像生成方法
GithubMAR图像生成开源项目深度学习自回归模型计算机视觉
MAR是一个开源项目,专注于自回归图像生成。它独创性地避免使用向量量化,在ImageNet 256x256数据集上实现了1.55的FID-50K分数。项目提供完整的PyTorch实现、预训练模型、在线演示和实验脚本。MAR通过创新设计,在不牺牲生成质量的前提下,显著提升了模型效率。
aim - 开源AI实验跟踪工具,可视化比较和高效管理AI实验
APIAimGithub实验跟踪开源开源项目机器学习热门
Aim是一款易于使用且功能强大的开源AI实验跟踪工具,支持数以万计的训练运行。它提供了高性能的用户界面来探索和比较训练运行,同时通过其SDK实现对跟踪元数据的编程访问,完美支持自动化和Jupyter Notebook分析。Aim专注于与多种机器学习框架集成,可视化和比较元数据,组织和标记实验,使其成为团队中信赖的机器学习项目支持工具。
aimet - 深度学习模型优化的量化与压缩工具
AIMETGithubPyTorch开源项目模型压缩模型量化深度学习
AI Model Efficiency Toolkit (AIMET) 提供先进的模型量化和压缩技术,专注于优化已训练的神经网络模型。其主要功能包括跨层均衡、偏差校正、自适应舍入和量化感知训练,显著提升模型运行性能,降低计算和内存要求,并保持任务精度。AIMET 兼容 PyTorch、TensorFlow 和 ONNX 模型,通过 AIMET Model Zoo 提供优化的8位推理神经网络模型。同时,AIMET 支持空间SVD和通道剪枝等压缩技术,并提供可视化工具检查模型量化和压缩效果。
LlamaGen - 自回归模型在图像生成中的应用和优势
AR模型GithubHugging FaceLlamaGen图像生成开源项目自回归模型
LlamaGen项目展示了自回归模型在图像生成中的潜力,通过无偏视觉信号和大规模数据训练,实现了媲美扩散模型的性能。该项目发布了多种图像tokenizer和生成模型,支持从100M到3B参数的多种配置,并提供在线演示和高效的vLLM服务框架。访问项目页面和在线demo,体验这些创新模型的强大功能。
VAR - 通过大规模预测生成可扩展图像的视觉自回归模型
GPT风格模型GithubVAR可视化自回归建模图像生成开源项目扩散模型
VAR模型利用创新的'下一尺度预测'策略,重塑自回归图像学习方式,优于传统扩散模型。它适用于多种图像生成任务,展现出优秀的尺度预测与型态泛化能力。现可通过FoundationVision/var进行交互体验。
Open-MAGVIT2 - 自回归视觉生成新突破 大幅提升图像分词性能
GithubOpen-MAGVIT2图像分词器大规模词表开源项目自回归模型视觉生成
Open-MAGVIT2是一个创新的自回归视觉生成项目,采用无查找技术和262144大小的码本,克服了VQGAN的局限性。该项目用PyTorch重新实现MAGVIT2分词器,在图像分词方面取得显著进展,8倍下采样时rFID达到0.39。项目致力于推动自回归视觉生成领域发展,目前处于积极开发阶段,未来计划拓展至视频生成领域。
Lumina-mGPT-7B-768 - 自回归多模态模型在图像生成和语言任务中的应用
GithubHuggingfaceLumina-mGPT图像生成多模态开源项目文本描述模型自动回归模型
Lumina-mGPT是一组多模态自回归模型,专注于视觉和语言任务,尤其在从文本描述生成逼真的图像方面表现出色。GitHub上的实现和示例代码让用户可以轻松探索和应用其能力。
AIGS - AI生成图像作为数据源的前沿探索与应用
AI生成图像Github开源项目数据源深度学习综述计算机视觉
AIGS项目系统研究了AI生成图像(AIGC)作为数据源的最新发展。通过对方法和应用的分类,该项目全面概述了AIGC在视觉领域的进展,包括生成模型、神经渲染等技术,以及在2D/3D视觉感知、图像生成和自监督学习等方面的应用。此外,项目整理了相关数据集,为AIGC研究提供了丰富资源。
LLMGA - 用于精确图像生成和编辑的多模态大语言模型
ECCV2024GithubLLMGA图像生成多模态大模型开源项目
LLMGA基于多模态大语言模型,提供图像生成与编辑解决方案。结合Stable Diffusion和详细语言生成提示,项目提升了上下文理解并减少生成过程中的噪音,增强图像内容的精度。LLMGA支持文本到图像(T2I)、补画、扩画及指令编辑,适用于Logo设计、海报制作和故事绘本生成,支持中英文指令。广泛的模型和数据集选择满足不同需求,是理想的图像生成和编辑助手。
InternImage - 突破大规模视觉基础模型性能极限
GithubInternImage图像分类大规模视觉模型开源项目目标检测语义分割
InternImage是一款采用可变形卷积技术的大规模视觉基础模型。它在ImageNet分类任务上实现90.1%的Top1准确率,创下开源模型新纪录。在COCO目标检测基准测试中,InternImage达到65.5 mAP,成为唯一突破65.0 mAP的模型。此外,该模型在涵盖分类、检测和分割等任务的16个重要视觉基准数据集上均展现出卓越性能,树立了多个领域的新标杆。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号