Project Icon

bench

LLM性能评估与工作流标准化工具

Bench是一款适用于生产环境的LLM评估工具,支持比较不同的LLM、提示词和生成超参数(如温度和令牌数量)。它提供统一接口,实现LLM评估流程标准化,可测试开源LLM在特定数据上的表现,并将排行的排名转化为实际用例评分。用户可以安装Bench、创建并运行测试套件,通过本地UI查看结果。

benchllm - 简化大语言模型和AI应用的连续集成与测试
BenchLLMGithubLLMPython开源开源项目测试
BenchLLM是一个开源Python库,用于简化大语言模型和AI应用的测试。它提供多种测试和评估方法,包括语义相似度和字符串匹配,并具有缓存功能。BenchLLM支持链、代理和各种LLM模型的测试,有助于消除不稳定因素,确保代码的可靠性。便捷的安装和使用方式使其适用于开发者进行自动化集成和模型评估。
langchain-benchmarks - LLM任务基准测试工具
GithubLLM任务LangChain BenchmarksLangSmith基准测试工具使用开源项目
提供多种LLM任务基准测试工具,涵盖数据集收集、任务评估等全流程。依赖LangSmith平台,附有详细文档和实例,鼓励用户优化和测试解决方案。
LongBench - 双语长文本理解多任务评估
GithubLongBench多语言大模型开源项目评估长文本理解
LongBench首次为大语言模型的长文本理解能力提供双语、多任务的全面评估基准。它覆盖中文和英文,包含六大类共21种任务,适用于单文档QA、多文档QA、摘要提取、少样本学习、合成任务和代码补全等场景。该项目提供自动化评估方法以降低成本,并涵盖平均长度为5k至15k的测试数据。同时,LongBench-E测试集通过统一采样,分析模型在不同输入长度的性能表现。
BIG-bench - 评估大型语言模型能力的开放基准
BIG-benchGithub任务创建基准测试开源项目模型评估语言模型
BIG-bench是一个开放的基准测试项目,致力于评估大型语言模型的能力并预测其未来发展。该项目包含200多个多样化任务,涉及算术、推理等多个领域。研究人员可通过JSON或编程方式贡献新任务,并利用公开模型进行评估。BIG-bench Lite作为24个精选任务的子集,提供了高效的模型性能评估方法。这一平台为深入研究语言模型能力提供了宝贵资源。
bigcodebench - 高难度代码生成基准测试评估LLM编程能力
BigCodeBenchGithub代码生成大语言模型开源项目编程能力评估基准
BigCodeBench是一个具有挑战性的代码生成基准测试,用于评估大型语言模型的实际编程能力。它提供复杂指令和多样函数调用,包括数据集、生成和评估脚本。基于EvalPlus框架,BigCodeBench实现精确评估和排名,提供预生成样本以加速研究。支持多种评估环境,采用unittest进行代码测试,为研究人员提供全面工具。
LLMs-Planning - 大型语言模型规划与推理能力评估与分析工具
GithubLLM人工智能基准测试开源项目规划评估
LLMs-Planning项目包含PlanBench和大型语言模型规划能力分析两个子项目。PlanBench提供可扩展的基准测试,用于评估大型语言模型在规划和推理变化方面的表现。项目还对大型语言模型的规划能力进行了批判性调查,为自然语言处理和人工智能规划领域的研究者提供了重要参考。
AgentBench - 全面评估大型语言模型在多环境下的自主代理能力
AgentBenchGithubLLM-as-Agent任务设置开源项目测试结果评估框架
AgentBench是首个评估大型语言模型(LLM)作为自主代理的基准,涵盖操作系统、数据库、知识图谱等8个不同环境。该项目通过多任务设置和完整的数据集,深入分析LLM的实际应用能力。新版AgentBench v0.2优化了框架结构,并增加了更多模型的测试结果,方便开发者扩展和使用。
llm_benchmarks - 大语言模型评估基准集合
GithubLLM人工智能开源项目机器学习自然语言处理语言理解
llm_benchmarks是一个全面的大语言模型评估基准集合,涵盖知识理解、推理能力、多轮对话和内容摘要等方面。该项目包含MMLU、ARC、GLUE等知名数据集,用于测试模型在不同任务中的表现。这一标准化工具为评估大语言模型性能提供了可靠依据,有助于相关技术的发展与应用。
yet-another-applied-llm-benchmark - 基于真实场景的大语言模型能力评估基准
API密钥Docker容器GithubLLM基准测试开源项目数据流DSL模型评估
yet-another-applied-llm-benchmark是一个评估大语言模型在实际应用场景中表现的基准测试项目。该项目包含近100个源自真实使用情况的测试案例,涵盖代码转换、反编译、SQL生成等多种任务。通过简单的数据流DSL设计测试,项目提供了一个灵活的框架来评估大语言模型的实际能力。这个基准虽不是严格的学术标准,但为开发者提供了衡量大语言模型在日常编程任务中表现的实用方法。
ML-Bench - 评测大型语言模型和代理在代码库级机器学习任务上的效果
GitHub仓库GithubML-Bench代码评估大语言模型开源项目机器学习任务
本文详细说明了如何在代码库级别评估大型语言模型和代理的表现,包括环境设置、数据准备、模型微调和API调用等内容。提供了相关脚本和工具,帮助研究者复现实验结果,适用于机器学习和模型评估领域的专业人员和研究者。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

天工AI音乐

天工AI音乐平台支持音乐创作,特别是在国风音乐领域。该平台适合新手DJ和音乐爱好者使用,帮助他们启动音乐创作,增添生活乐趣,同时发现和分享新音乐。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号