Project Icon

Phi-3-medium-128k-instruct-GGUF

Phi-3-medium-128k-instruct模型的多硬件平台适配与量化选项

Phi-3-medium-128k-instruct项目以llama.cpp最新版本为基础,提供多种量化模型以适应不同内存与性能需求,支持包括Nvidia的cuBLAS、AMD的rocBLAS、CPU及Apple Metal在内的多种硬件平台。推荐使用Q6_K_L和Q5_K_M版本以实现高精度场景需求。用户可利用huggingface-cli选择性下载所需模型,以达到速度与质量的最佳平衡。

Phi-3.5-mini-instruct-GGUF - Microsoft Phi-3.5-mini模型的GGUF格式多位宽量化版本
GGUFGithubHuggingfacePhi-3.5开源项目文本生成本地部署模型量化模型
此项目提供Microsoft Phi-3.5-mini-instruct模型的GGUF格式量化版本。GGUF是llama.cpp团队推出的新格式,取代了GGML。支持2-bit至8-bit多种量化位宽,兼容多个GGUF支持工具,如llama.cpp和LM Studio。这些工具具备GPU加速和Web界面,便于本地部署和使用大型语言模型。
Llama-3.2-3B-Instruct-GGUF - Llama-3.2-3B-Instruct模型的多种量化优化版本
GGUFGithubHuggingfaceLlama-3.2-3B大语言模型开源项目提示词格式模型量化
该项目提供Llama-3.2-3B-Instruct模型的11种量化版本,采用llama.cpp优化。量化精度从F16到Q4_K_S不等,文件大小介于6.43GB至1.93GB之间。Q6_K、Q5_K和Q4_K系列在性能与模型大小间取得平衡,适用多种场景。这些版本在保持模型质量的同时,有效减小文件体积并提升运行效率。
Qwen2.5-Coder-7B-Instruct-GGUF - 深度学习模型的多规格量化版本适配不同硬件和性能要求
GGUFGithubHuggingfaceQwen2.5-Coder-7B-Instructllama.cpp大语言模型开源项目模型量化
本项目为Qwen2.5-Coder-7B-Instruct模型提供了从15GB到2.78GB的多种量化版本。采用llama.cpp最新技术,包括K-quants和I-quants两种量化方案,并针对ARM架构优化。用户可根据设备内存容量和性能需求选择适合版本。各版本保留原始模型核心功能,适用于多种部署场景。
Llama-3.2-3B-Instruct-uncensored-GGUF - 多硬件兼容的Llama-3.2量化模型
ARM推理GithubHuggingfaceLlama-3.2-3B-Instruct-uncensored嵌入权重开源项目数据集模型量化
LLama-3.2-3B-Instruct模型经过imatrix量化处理,确保在多种硬件配置(如ARM架构)下的高效表现。可在LM Studio中运行并支持多种格式选择,以满足不同内存和性能要求。通过huggingface-cli下载特定文件或全集成,方便易用。K-quants和I-quants提供多样化速度与性能的选择,是研究及开发人员的灵活工具。用户反馈能有效提升量化模型的适用性。
Phi-3-mini-128k-instruct-onnx-tf - 多平台高性能运行的指令微调大语言模型优化版本
AI模型GithubHuggingfaceONNXONNXRuntimePhi-3开源项目模型模型优化
该项目提供Phi-3-mini-128k-instruct模型的ONNX优化版本,支持多种设备和平台高性能推理。模型适配CPU、GPU和移动设备,提供不同精度版本。经指令微调和安全优化,推理能力出色。项目配备ONNX Runtime Generate API,便于开发集成。与PyTorch相比,ONNX版本性能全面提升,FP16 CUDA版本最高提速5倍,INT4 CUDA版本最高提速9倍。
Phi-3-medium-128k-instruct - 14B参数轻量级开源大语言模型支持128K上下文
GithubHuggingfacePhi-3人工智能基准测试开源项目推理能力模型语言模型
Phi-3-medium-128k-instruct是微软开发的14B参数轻量级开源大语言模型,支持128K上下文长度。该模型在常识、语言理解、数学、编程、长文本处理和逻辑推理等方面表现优异,与同等规模及更大模型相比表现出色。经过指令微调和偏好优化,适用于多种商业和研究场景,尤其适合资源受限环境、低延迟场景和需要强大推理能力的应用。
Llama-3.2-1B-Instruct-GGUF - Llama 3.2模型的多精度量化版本
GithubHuggingfaceLlama人工智能开源开源项目模型语言模型量化
Llama-3.2-1B-Instruct-GGUF是Llama 3.2模型的量化版本,使用llama.cpp和imatrix方法进行处理。该项目提供从f16到Q3_K_XL多种精度选项,文件大小在0.80GB至2.48GB之间。这些模型支持多语言处理,适合在资源受限的设备上运行,用户可根据需求选择合适版本以平衡性能和资源占用。
Phi-3.5-mini-instruct-GGUF - 多语言轻量级模型,优化高效推理和准确性
GithubHuggingfacePhi 3.5 Mini开源项目数据优化模型模型训练自然语言处理量子化
Phi-3.5-mini是microsoft推出的多语言开放型模型,专注于高质量推理数据,支持128K上下文标记长度。经过监督微调、近端策略优化和直接偏好优化,该模型确保严格的指令遵循和安全性。采用多种量化方法(从Q2到Q8及f16),满足多样硬件需求,适用于广泛的自然语言处理和代码任务,由SanctumAI进行量化。
Llama-3.1-Nemotron-70B-Instruct-HF-GGUF - Llama-3.1-Nemotron-70B多级量化模型适配不同硬件
GPUGithubHuggingfaceLlama-3.1-Nemotron-70B-Instruct-HF人工智能开源项目模型语言模型量化
该项目为Llama-3.1-Nemotron-70B-Instruct-HF模型提供多种量化版本,涵盖Q8_0至IQ1_M级别。针对不同硬件和性能需求,项目提供详细的文件选择指南,并包含模型提示格式及下载方法说明。用户可根据设备选择适合的版本,便于快速部署和使用。
Meta-Llama-3.1-8B-Instruct-GGUF - Llama 3.1多语言指令模型的量化版本
GGUFGithubHuggingfaceMeta-Llamallama.cpp人工智能开源项目模型量化
Meta-Llama-3.1-8B-Instruct-GGUF是Llama 3.1模型的量化版本,使用llama.cpp技术实现。该项目提供多种精度的模型文件,从32GB的全精度到4GB的低精度,适应不同硬件需求。模型支持英语、德语、法语等多语言指令任务,可用于对话和问答。用户可选择合适的量化版本,在保持性能的同时优化资源使用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号