Project Icon

Phi-3-medium-128k-instruct-GGUF

Phi-3-medium-128k-instruct模型的多硬件平台适配与量化选项

Phi-3-medium-128k-instruct项目以llama.cpp最新版本为基础,提供多种量化模型以适应不同内存与性能需求,支持包括Nvidia的cuBLAS、AMD的rocBLAS、CPU及Apple Metal在内的多种硬件平台。推荐使用Q6_K_L和Q5_K_M版本以实现高精度场景需求。用户可利用huggingface-cli选择性下载所需模型,以达到速度与质量的最佳平衡。

Phi-3-medium-128k-instruct-c4-32 - 创新型中等规模语言模型探索
GithubHuggingfaceMIT许可证开源协议开源项目模型版权知识产权软件许可
Phi-3-medium-128k-instruct-c4-32是一个中等规模语言模型项目,致力于在控制模型大小的同时提高性能。通过创新的训练方法,该模型在上下文理解和指令遵循方面取得了进展。这为自然语言处理研究提供了新视角,也为AI领域的探索提供了实用工具。
Meta-Llama-3.1-70B-Instruct-FP8-KV - Meta-Llama-3.1的FP8量化方法实现高效部署
FP8GithubHuggingfaceMeta-Llama-3.1-70B-InstructQuark开源项目推理模型量化
项目使用Quark对Meta-Llama-3.1模型进行FP8量化,优化了线性层(不含lm_head)的权重和激活过程。支持用户在单或多GPU平台上部署并在vLLM兼容平台上高效运行。尽管伪量化评估结果可能与实际推理精确度略有不同,但仍提供关键指标,助力模型开发与优化。通过FP8对称模式的应用,模型性能得到提升,并提供了准确性的参考标准,为后续模型开发提供支持。
Qwen2.5-7B-Instruct-GGUF - Qwen2.5-7B-Instruct的多样化量化方案增强模型适应性
ARM芯片GithubHuggingfaceQwen2.5-7B-Instruct开源项目性能优化模型训练数据集量化
项目采用llama.cpp的最新量化方案对Qwen2.5-7B-Instruct模型进行优化,提供灵活的量化格式以匹配各类硬件环境。更新的上下文长度管理与先进的分词器,无论选择传统的Q-K量化还是新兴的I-quant,各种档次的文件都能帮助设备实现性能与速度的平衡。尤其是对ARM架构的专门优化,即便在低RAM环境下,用户也能凭借有限的资源获得可行的使用体验。
Meta-Llama-3.1-8B-Instruct-GGUF - 多语言大型语言模型的量化GGUF版本
GithubHuggingfaceLlama 3多语言大语言模型开源项目指令调优模型量化
Meta Llama 3.1 8B Instruct模型的GGUF量化版本是一个多语言大型语言模型,经过指令调优,适用于多语言对话场景。该项目提供多种量化版本,从Q2_K到f16不等,文件大小范围为3.18GB至16.07GB,可满足不同硬件配置需求。这些量化版本使得模型能够在各种计算资源条件下运行,提高了模型的可访问性和实用性。
Phi-3-mini-4k-instruct-gguf - 轻量级通用AI模型支持推理分析与代码生成
GithubHuggingfacePhi-3人工智能大语言模型开源项目机器学习模型模型训练
Phi-3-mini-4k-instruct-gguf采用GGUF格式实现的轻量级语言模型,具备3.8B参数规模和4K上下文长度支持。该模型在常识理解、数学计算、代码生成等方面表现突出,适合在计算资源受限环境下运行。模型经过安全性优化,可用于英语场景的商业及研究应用。
Llama-3-8B-Instruct-v0.10-GGUF - Llama-3指令模型的GGUF格式量化版本 支持2-8比特精度
GGUF格式GithubHuggingfaceLlama-3开源项目文本生成本地部署模型量化模型
这是Llama-3-8B-Instruct-v0.10模型的GGUF格式量化版本,提供2-bit至8-bit的精度选项。GGUF是llama.cpp团队开发的新格式,取代了GGML,支持多种客户端和库。该项目使用户能够在本地设备上高效运行大型语言模型,适用于文本生成任务。
Replete-LLM-V2.5-Qwen-14b-GGUF - Replete-LLM-V2.5-Qwen-14b模型的多量化处理与硬件优化概述
ARM芯片GithubHuggingfaceRombos-LLM-V2.5-Qwen-14b开源项目性能比较模型模型优化量化
该项目对Rombos-LLM-V2.5-Qwen-14b模型进行了多种量化优化,使用了llama.cpp的b3825版本。支持多种量化格式,如f16、Q8_0、Q6_K_L等,适用不同硬件环境,推荐Q6_K_L和Q5_K_L以实现高质量和资源节省。用户可根据硬件需求选择合适的格式,并使用huggingface-cli进行下载。针对ARM芯片提供了特定的优化量化选项Q4_0_X_X,广泛适用于文本生成应用,提升运行效率和输出质量。
Meta-Llama-3-70B-Instruct-abliterated-v3.5-IMat-GGUF - 提升量化效率及IMatrix集成以增强文本生成性能
GithubHuggingfaceIMatrixMeta-Llama-3-70B-Instruct-abliterated-v3.5开源项目文本生成模型量化
本项目应用Llama.cpp的量化技术结合IMatrix数据集,对Meta-Llama-3-70B-Instruct-abliterated-v3.5模型进行优化。支持BF16到Q2_K等多种量化格式,用户可根据需求选择下载不同版本,适用于多种文本生成场景。IMatrix集成提升了低比特位的性能表现,适合现代高效计算需求。提供全面的下载指南和FAQ,帮助用户有效地理解和使用文件,实现文本生成任务的高效推理。
Phi-3.5-mini-instruct-bnb-4bit - 轻量级多语言模型支持高效微调和长文本理解
GithubHuggingfacePhi-3.5transformers多语言开源项目微调模型长上下文
Phi-3.5-mini-instruct是一款轻量级开源语言模型,支持128K上下文长度。经过监督微调和优化,该模型在多语言能力和长文本理解方面表现出色。适用于内存受限环境、低延迟场景和推理任务,可作为AI系统的基础组件。在商业和研究领域都有广泛应用前景。
CodeQwen1.5-7B-GGUF - 丰富的量化模型选择,多平台优化性能
CodeQwen1.5-7BGithubHugging FaceHuggingface内存需求开源项目模型模型质量量化
通过llama.cpp工具实现多量化模型的生成,CodeQwen1.5系列提供不同文件大小和质量选项,适用于各种设备资源和性能需求。推荐选择高质量Q6_K和Q5_K_M格式,平衡性能与存储空间。该项目适合RAM和VRAM有限的用户,并支持多种格式在不同硬件平台上运行。新方法如I-quants提高性能输出,但与Vulcan不兼容,适用于Nvidia的cuBLAS和AMD的rocBLAS。丰富的特性矩阵便于深入比较选择。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号