Project Icon

BayesianOptimization

贝叶斯优化的Python库 高效优化黑盒函数

BayesianOptimization是一个纯Python实现的贝叶斯全局优化库。该工具利用高斯过程构建未知函数的后验分布,平衡探索与利用来寻找函数最大值。它适用于高成本函数优化,能以较少迭代找到接近最优的参数组合。BayesianOptimization提供简洁API,支持自定义搜索空间、序列域缩减和约束优化等功能,适用于机器学习模型调参等场景。

hyperopt - Python库Hyperopt助力机器学习超参数优化
GithubHyperoptPython库分布式计算开源项目机器学习超参数优化
Hyperopt是一个强大的Python库,专门用于复杂搜索空间中的超参数优化。它支持实值、离散和条件维度,提供随机搜索、TPE等多种算法。通过Apache Spark和MongoDB实现并行化,Hyperopt能够显著提高机器学习模型的调优效率。作为开源项目,它为机器学习领域提供了高效的超参数优化解决方案,正在被广泛应用于加速模型开发和性能优化。
scikit-opt - Python群体智能优化算法库
GithubPython库scikit-opt优化算法开源项目智能算法遗传算法
scikit-opt是一个Python优化库,实现了多种群体智能算法,如遗传算法、粒子群优化和模拟退火。该库支持用户自定义函数、GPU加速和多种加速方式,可用于解决各类优化问题。scikit-opt具有易用性强、功能丰富的特点,适合数据科学家和研究人员使用。
opytimizer - 基于自然启发的Python优化库 简化元启发式算法开发
GithubOpytimizerPython优化器元启发式优化开源项目搜索空间自然启发算法
Opytimizer是一个基于自然启发的Python优化库,实现了多种元启发式算法。它允许用户创建自定义优化器、设计优化任务并组合不同策略。该库专注于最小化问题,提供丰富示例和主流机器学习框架集成。Opytimizer可简化计算实验和参数调优,适合优化算法研究和应用开发。
optuna - 自动化机器学习超参数优化框架
GithubOptunaPython开源框架开源项目机器学习超参数优化
Optuna是一个面向机器学习的开源超参数优化框架。它采用define-by-run风格API,特点是轻量级、通用性强和平台无关。Optuna支持Python式搜索空间定义、高效优化算法、易于并行化和快速可视化。框架可处理多目标优化、约束优化和分布式优化等任务,适用于Python 3.7+版本,并集成多个第三方库。
PyPortfolioOpt - 功能强大的Python投资组合优化库
GithubPyPortfolioOpt均值方差优化夏普比率开源项目投资组合优化风险模型
PyPortfolioOpt是一个用于投资组合优化的Python库。它实现了经典的均值-方差优化、Black-Litterman模型等方法,还包含风险平价等新型技术。该库适用于个人和专业投资者,可高效组合多种投资策略。PyPortfolioOpt提供收益估算、风险建模、目标函数优化等核心功能,采用模块化设计便于扩展。它能帮助用户在考虑风险的同时优化投资组合表现。
vizier - 开源黑盒优化框架助力机器学习研究
GithubVizier分布式系统开源项目机器学习超参数调优黑盒优化
Open Source Vizier是一个Python开发的黑盒优化框架,源自Google Vizier项目。它提供用户、开发者和基准测试三大API,支持分布式多客户端环境。该框架集成了基于JAX的贝叶斯优化器,适用于超参数调优、进化算法和程序搜索等多种场景。作为开源项目,Vizier具有灵活的安装选项,可满足不同的优化研究需求。
EvoloPy - Python自然启发式优化工具箱 全局优化算法集成
EvoloPyGithubPython优化算法全局优化开源工具箱开源项目
EvoloPy是一个Python实现的自然启发式优化工具箱,聚焦全局优化问题。工具箱集成了粒子群优化(PSO)、多宇宙优化器(MVO)等多种经典和新型元启发式算法,利用NumPy和SciPy实现高效的数组和矩阵运算。EvoloPy提供23个基准函数,支持自定义实验参数,为优化算法研究和应用提供了开放灵活的平台。
botorch - PyTorch驱动的模块化贝叶斯优化库
BoTorchGithubPyTorch开源项目机器学习概率模型贝叶斯优化
BoTorch是一个基于PyTorch的贝叶斯优化库,提供模块化接口用于组合概率模型、采集函数和优化器。该库充分利用PyTorch的自动微分和并行计算能力,支持基于蒙特卡洛的采集函数,并与GPyTorch深度集成。BoTorch主要面向贝叶斯优化和AI领域的研究人员及专业实践者,为实现和测试新算法提供灵活高效的平台。
baal - 贝叶斯主动学习库助力深度学习优化
BaalGithub不确定性估计主动学习开源项目深度学习蒙特卡洛方法
Baal是一个开源的贝叶斯主动学习库,适用于工业应用和研究场景。该库提供多种主动学习方法,如蒙特卡洛Dropout和深度集成。Baal框架由四个核心组件构成,使实现主动学习流程变得简单高效。支持Python 3.8及以上版本,可通过pip或Poetry安装。Baal能有效减少数据标注工作量,提升模型性能,是机器学习领域的实用工具。
pygmo2 - 大规模并行优化Python库
GithubPython库pygmo优化算法并行计算开源项目科学计算
pygmo是一个开源的、用于大规模并行优化的科学Python库。它围绕提供优化算法和优化问题的统一接口而构建,使其易于在大规模并行环境中部署。该库支持多目标优化和多种优化算法,能够高效处理复杂的优化问题和大规模数据。pygmo提供了全面的文档和教程,适用于研究、教学以及各种实际应用场景。其强大的功能和灵活性使其成为解决复杂优化挑战的理想工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号