Project Icon

BayesianOptimization

贝叶斯优化的Python库 高效优化黑盒函数

BayesianOptimization是一个纯Python实现的贝叶斯全局优化库。该工具利用高斯过程构建未知函数的后验分布,平衡探索与利用来寻找函数最大值。它适用于高成本函数优化,能以较少迭代找到接近最优的参数组合。BayesianOptimization提供简洁API,支持自定义搜索空间、序列域缩减和约束优化等功能,适用于机器学习模型调参等场景。

tpot - 基于遗传算法的自动机器学习管道优化工具
GithubTPOT开源项目机器学习管道优化自动化遗传算法
TPOT是一个开源的自动机器学习工具,基于Python开发。它采用遗传算法来优化机器学习管道,能够自动探索大量可能的管道组合,为给定数据集找到最佳模型。TPOT构建于scikit-learn之上,可生成易读易修改的Python代码。该工具支持分类和回归任务,适用于多种数据科学场景,能够有效减少数据科学家在模型选择和参数调优上的时间投入。
GPBoost - 融合树提升与高斯过程的先进机器学习库
GPBoostGithub开源项目机器学习树提升混合效应模型高斯过程
GPBoost是一个创新机器学习库,融合树提升、高斯过程和分组随机效应模型。它支持独立应用树提升、高斯过程和广义线性混合效应模型,主要用C++编写,提供C接口及Python和R包。GPBoost算法结合树提升和潜在高斯模型优势,提高预测函数学习效率,优化高基数分类变量处理,并适用于空间或时空数据建模。这使其成为非线性建模和复杂依赖结构分析的理想工具。
learned_optimization - 基于JAX的元学习优化器研究框架
GithubJAXlearned_optimization优化器元学习开源项目机器学习
learned_optimization是一个研究代码库,主要用于学习型优化器的训练、设计、评估和应用。该项目实现了多种优化器和训练算法,包括手工设计的优化器、学习型优化器、元训练任务以及ES、PES和截断反向传播等外部训练方法。项目提供了详细的文档和教程,包括Colab笔记本,方便用户快速入门。learned_optimization适用于元学习和动态系统训练的研究,为相关领域提供了功能丰富的工具。
deephyper - 自动化机器学习任务的开源优化框架
DeepHyperGithub开源项目机器学习自动化深度集成神经架构搜索超参数优化
DeepHyper是一个专注于自动化机器学习任务的Python开源框架。它提供了超参数优化、神经网络架构搜索和深度集成不确定性量化等功能。支持单机和分布式环境,适用于多种场景。DeepHyper简化了机器学习工作流程,为研究人员和开发者提供了强大的工具。项目包含详细文档、快速入门指南和活跃的社区支持,方便用户快速上手和深入使用。
orion - 异步黑盒函数优化框架
GithubOríon实验平台开源项目异步框架机器学习超参数优化
Orion是一个专用于黑盒函数优化的异步框架,可作为机器学习模型和训练的元优化器。该框架提供灵活的大规模异步优化实验平台,设计理念注重最小化对研究工作流的干扰。Orion支持快速调优,为用户脚本提供简洁的非侵入式接口,并集成了先进的超参数算法、搜索空间定义和全面的配置系统。
GeneticAlgorithmPython - Python库,用于构建和优化遗传算法
GithubPyGADPython开源库开源项目机器学习优化遗传算法
PyGAD是一个开源的Python库,用于构建遗传算法并优化机器学习模型。支持单目标和多目标优化,以及Keras和PyTorch框架。PyGAD提供多种交叉、变异和选择方式,并允许自定义适应度函数。库正在积极开发,并提供详细文档和示例帮助用户快速上手。
OpenMDAO - 开源Python系统分析与多学科优化计算平台
GithubOpenMDAOPython多学科优化开源项目系统分析高性能计算
OpenMDAO是一个用Python开发的开源高性能计算平台,专门用于系统分析和多学科优化。它支持模型分解,便于构建和维护,同时通过高效并行算法实现紧密耦合求解。平台主要支持基于梯度的优化和解析导数,可处理大规模设计空间。此外,OpenMDAO还提供并行计算功能,适用于无梯度优化、混合整数非线性规划和设计空间探索。
gpytorch - 基于PyTorch实现的灵活高斯过程建模工具
GPU加速GPyTorchGaussian processGithubKISS-GPPyTorch开源项目
GPyTorch是一个基于PyTorch实现的高斯过程库,旨在简便地创建可扩展、灵活的高斯过程模型。它通过数值线性代数技术实现了显著的GPU加速,并集成了如SKI/KISS-GP和随机Lanczos展开等先进算法,同时能与深度学习框架无缝结合。支持Python 3.8及以上版本。更多信息、示例和教程请参阅官方文档。
pymc - Python贝叶斯统计建模与概率编程框架
GithubPyMCPython包变分推断开源项目贝叶斯统计建模马尔可夫链蒙特卡洛
PyMC是一个Python贝叶斯统计建模框架,专注于高级马尔可夫链蒙特卡洛和变分推断算法。它提供直观的模型语法、强大的采样算法和推断功能,可处理复杂模型。PyMC利用PyTensor优化计算,支持缺失值处理,并提供丰富的示例资源。作为一个灵活的概率编程工具,PyMC适用于广泛的统计建模任务。
keras-tuner - 兼具易用性和可扩展性的超参数优化工具
GithubKerasTunerPython 3.8+TensorFlow 2.0+开源项目机器学习模型超参数优化
KerasTuner是一个便捷且可扩展的超参数优化工具,可以有效解决超参数搜索过程中遇到的问题。用户可以通过define-by-run语法轻松配置搜索空间,并使用贝叶斯优化、Hyperband和随机搜索算法找到模型的最佳参数值。该工具对研究人员十分友好,便于进行新搜索算法的实验。KerasTuner适用于Python 3.8+和TensorFlow 2.0+,并提供详细的开发者指南和API参考文档。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号