Project Icon

modeltime

R语言时间序列预测框架 整合机器学习与传统方法

modeltime是R语言的时间序列预测框架,简化了预测工作流程,整合机器学习和传统分析方法。支持ARIMA、ETS、Prophet等模型,可与tidymodels生态系统集成。通过6步流程,用户可快速构建、评估和部署预测模型,适用于高性能时间序列分析。框架还包括modeltime.h2o用于AutoML、modeltime.gluonts用于深度学习,以及modeltime.ensemble用于集成预测。这些组件共同构成了一个全面的时间序列分析生态系统,为不同规模和复杂度的预测任务提供解决方案。

granite-timeseries-ttm-r2 - IBM开源轻量级模型TTM引领时间序列预测新方向
GithubHuggingfaceTinyTimeMixers多变量预测开源项目时间序列预测模型零样本学习预训练模型
IBM Research开源的TinyTimeMixers (TTM)模型仅需1M参数,就能在多变量时间序列预测中超越数十亿参数的基准。TTM支持零样本预测,也可用少量数据微调达到竞争性能。适用于分钟至小时级别的点预测,轻量快速,单GPU或笔记本即可运行。TTM为时间序列预测带来新方向,尤其适合资源受限环境。
Time-LLM - 开发用于时序预测的高级语言模型
GithubICLR 2024Time-LLM大语言模型开源项目时间序列预测框架重编程
Time-LLM将大型语言模型重新用于时序预测,利用其强大功能处理时序数据,并结合专家知识和任务说明提升预测精度。支持Llama-7B、GPT-2和BERT等模型,框架灵活且适应性广泛。了解Time-LLM的最新更新、使用案例和技术细节,访问我们的详细介绍及相关资源。
timesfm - 谷歌研究院开发的时间序列预测基础模型
GithubTimesFM基础模型开源项目时间序列预测深度学习
TimesFM是谷歌研究院开发的时间序列预测基础模型,支持多种时间频率的单变量预测。模型可处理最长512个时间点的上下文和任意长度的预测范围,提供简单的API接口支持数组和pandas输入。通过外部回归器库,TimesFM能处理静态和动态协变量。此外,该模型支持微调功能,允许用户在自有数据上优化性能。
moment - 时间序列分析基础模型 多任务多领域应用
GithubMOMENT基础模型多任务开源项目时间序列预训练
MOMENT是一个开源的时间序列分析基础模型家族,为多任务、多数据集和多领域应用而设计。该模型在大规模时间序列数据上预训练,可处理预测、分类、异常检测和插补等任务。MOMENT能捕捉时间序列的内在特征,学习有意义的数据表示,在少量标记数据的情况下也表现出色。项目提供预训练模型、教程和研究代码,为时间序列分析提供了实用工具。
moirai-1.0-R-small - Moirai 开源预训练时间序列预测模型
GithubHuggingfaceMoiraiTransformer开源项目时间序列预测机器学习模型预训练模型
Moirai-1.0-R-small是一个开源的预训练时间序列预测模型。它基于掩码编码器架构,在LOTSA数据集上训练,可处理多变量时间序列。该模型使用补丁嵌入和混合分布输出等技术,提供高精度预测。通过uni2ts库,研究人员和开发者可以便捷地将Moirai应用于各类时间序列预测任务。
Awesome-TimeSeries-SpatioTemporal-LM-LLM - 大型语言模型在时序和时空数据分析中的应用资源
Github基础模型大型语言模型开源项目时空数据时间序列预训练模型
该项目汇集了用于时间序列、时空数据和事件数据分析的大型语言模型及基础模型资源。内容全面涵盖了最新研究进展,包括论文、代码和数据集。涉及领域包括通用时间序列分析、交通、金融、医疗等多个应用方向,以及事件分析、时空图和视频数据等相关主题。项目为研究人员和实践者提供了一个综合性资源库,并持续更新最新成果。
flow-forecast - 开源时间序列深度学习框架,支持最新模型和云端集成
Flow ForecastGithubtransformer开源开源项目时间序列预测深度学习
Flow Forecast 是一个开源时间序列预测深度学习框架,提供最新的Transformer、注意力模型、GRU等技术,并具有易于理解的解释指标、云集成和模型服务功能。该框架是首个支持Transformer模型的时间序列框架,适用于流量预测、分类和异常检测。
test-ttm-v1 - 开源时间序列预测模型 高效预测基础
GithubHuggingfaceTinyTimeMixer基础模型开源项目时间序列模型预测预训练模型
Test TinyTimeMixer (TTM)是一个开源的时间序列预测基础模型。这个项目利用预训练方法,为时间序列分析提供了有力支持。TTM致力于提升时间序列预测的效率和准确性,可应用于多种时间相关的数据分析场景。作为开源项目,它遵循Apache 2.0许可证,并在Hugging Face平台上提供。TTM为研究人员和数据科学家提供了一个探索和优化时间序列预测技术的平台。
sktime - 多功能时间序列分析和预测库
GithubPython库sktime开源项目时间序列分析机器学习统一接口
sktime是一个开源的Python时间序列分析库,为多种时间序列学习任务提供统一接口。它支持时间序列分类、回归、聚类、标注和预测等功能,并提供专门的时间序列算法和兼容scikit-learn的工具。sktime还整合了多个相关库的接口,便于用户在不同时间序列任务间迁移算法。
chronos-forecasting - 基于语言模型架构的预训练时间序列预测工具
AutoGluonChronosGithub开源项目时间序列语言模型预训练
Chronos是一款基于语言模型架构的预训练时间序列预测工具。它通过量化处理将时间序列转换为标记序列,并使用大规模的公开和合成数据进行训练。Chronos模型在零样本场景中表现优异,提供从预测到嵌入提取的完整解决方案。通过AutoGluon,用户可轻松进行模型集成和云端部署,提升预测性能和应用的灵活性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号