Project Icon

modeltime

R语言时间序列预测框架 整合机器学习与传统方法

modeltime是R语言的时间序列预测框架,简化了预测工作流程,整合机器学习和传统分析方法。支持ARIMA、ETS、Prophet等模型,可与tidymodels生态系统集成。通过6步流程,用户可快速构建、评估和部署预测模型,适用于高性能时间序列分析。框架还包括modeltime.h2o用于AutoML、modeltime.gluonts用于深度学习,以及modeltime.ensemble用于集成预测。这些组件共同构成了一个全面的时间序列分析生态系统,为不同规模和复杂度的预测任务提供解决方案。

Time-Series-Library - 开源深度学习时间序列分析工具库
GithubTSLib开源项目异常检测时间序列深度学习预测
TSLib为深度学习研究者提供了一个专业开源时间序列分析库,涵盖广泛的应用领域,如长短期预测、数据填充、异常检测和分类。本库提供清晰的代码基础,支持时间序列模型的评估与开发,包括最新的模型评估和深度时间序列研究成果。该工具适合科研和开发人员使用,以推动时间序列分析的未来研究与实践。
LLM4TS - 大型语言模型和基础模型在时间序列分析中的最新进展
AIGithubLLM基础模型开源项目时间序列预训练
LLM4TS项目整理了时间序列分析领域中大型语言模型和基础模型的最新研究。主要内容包括时间序列LLM的进展、专用基础模型、数据集和重要发现。此外,项目还涵盖了预训练时间序列模型和LLM在推荐系统等相关领域的应用,为研究和实践提供了丰富的资源。
AutoTS - 自动化时间序列预测工具
AutoTSGithubPython包开源项目数据分析时间序列预测自动机器学习
AutoTS是一个Python时间序列预测工具,专注于快速部署高精度预测模型。该工具在2023年M6预测竞赛中表现出色,支持多种预测模型和数据转换方法。AutoTS能够处理多变量输出和概率预测,通过自动机器学习寻找最佳模型组合。它适用于大规模数据集,提供横向和马赛克风格的集成方法,以及丰富的指标、交叉验证和数据处理功能。
chronos-t5-mini - 开源时间序列预测模型实现高效概率预测
Chronos-T5GithubHuggingface开源项目时间序列预测概率预测模型语言模型预训练模型
Chronos-T5-Mini是基于T5架构开发的时间序列预测模型,参数规模为2000万。模型通过将时间序列转换为token序列进行训练,采用多轨迹采样方式实现概率预测。模型在公开时间序列数据集和高斯过程生成的合成数据上完成预训练,采用4096大小的词汇表,相比原始T5模型显著降低了参数量同时保持了预测性能。
nixtla - 精准的时间序列预测和异常检测,适用于多领域的生成式预训练模型
GithubTimeGPT开源项目异常检测时间序列零样本推理预测
TimeGPT是一款生成式预训练模型,专注于时间序列分析,支持零样本推断。该模型可应用于零售、电力、金融、物联网等多个领域,通过简洁的代码实现精准的预测与异常检测。TimeGPT提供灵活的API访问,兼容多种编程语言和平台。基于大规模数据集的训练,它在多种频率下的预测表现卓越,特别适合需要快速、精确时间序列分析的应用。
chronos-t5-tiny - 轻量级时间序列预测模型 基于T5架构设计
Chronos-T5GithubHuggingface开源项目时间序列预测概率预测模型语言模型架构预训练模型
Chronos-T5-Tiny是一款轻量级时间序列预测模型,基于T5架构设计。该模型将时间序列转换为token序列进行训练,能够生成概率性预测并支持多轨迹采样。与原始T5相比,Chronos-T5-Tiny仅使用4096个不同token,参数量减少至800万,更加精简高效。研究人员和开发者可通过简洁的Python接口快速应用此模型进行时间序列分析。
mlr3 - 现代化的R语言机器学习框架
GithubR语言mlr3开源项目数据分析机器学习模型训练
mlr3是一个现代化的R语言机器学习框架,专注于高效和面向对象的设计。它提供构建机器学习模型的基本组件,支持分类、回归等任务,并具有良好的可扩展性。该框架利用R6类和data.table实现清晰的面向对象设计和快速数据处理。mlr3提供交叉验证等重采样方法和丰富的性能评估指标。作为mlr的继任者,mlr3克服了前身的局限性,为研究人员和数据科学家提供更灵活、更易维护的机器学习工具。
anomalize - R语言时间序列异常检测工具
AnomalizeGithubR语言开源项目异常检测数据分析时间序列
anomalize是一个R语言包,用于时间序列异常检测。它提供时间序列分解、异常检测和重组等功能,可有效分离正常数据和异常数据。该工具支持直观的可视化,并可通过清理异常值提高预测准确性。虽然核心功能已被timetk包替代,但anomalize仍保留原有功能以支持现有代码。
TFB - 时间序列预测评估框架
GithubTFB基准测试开源库开源项目时序预测评估框架
TFB是一个为时间序列预测研究设计的开源库。它提供清晰的代码库,支持对预测模型进行端到端评估,并通过多种策略和指标比较模型性能。TFB特点包括多样化数据集、全面基线模型、灵活评估策略和丰富评估指标。研究人员可利用TFB开发新方法或评估自有时间序列数据。
moirai-1.0-R-large - 基于Transformer的通用多变量时序预测模型
GithubHuggingfaceMoirai大规模预训练开源项目时间序列预测机器学习模型深度学习
Moirai-1.0-R-large是一个基于Masked Encoder的时序预测Transformer模型,通过LOTSA数据集预训练而成。模型采用补丁嵌入和Transformer架构设计,支持多变量时序数据处理和动态协变量预测。用户可通过uni2ts库实现模型部署,拥有3.11亿参数的模型规模使其成为Moirai系列中参数量最大的版本。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号