Project Icon

pytorch-blender

将Blender与PyTorch融合的深度学习框架

blendtorch是一个Python框架,将Blender与PyTorch无缝集成,用于人工视觉数据的深度学习。它使用Eevee实时渲染器生成图像和注释,提高了模型训练效率。该框架支持分布式Blender渲染直接输入PyTorch数据管道,适用于监督学习和域随机化。blendtorch还提供OpenAI Gym支持,可用于强化学习训练。这一工具为人工训练数据生成和深度学习研究提供了灵活高效的解决方案。

flashtorch - 基于PyTorch的神经网络可视化工具
FlashTorchGithubPyTorch可视化开源项目特征可视化神经网络
FlashTorch是基于PyTorch的神经网络可视化工具,通过简单的接口实现特征可视化技术,如显著性图和激活最大化。该工具兼容torchvision预训练模型和自定义PyTorch模型,有助于研究人员和开发者理解、解释及优化神经网络的内部工作机制。FlashTorch仅需几行代码即可应用,为深入分析神经网络提供了便捷途径。
PyTorch_Tutorial - PyTorch深度学习实践教程
GithubPyTorch代码实践开源项目教程模型训练深度学习
PyTorch_Tutorial是一个综合性深度学习教程项目,专注于PyTorch框架的应用。教程涵盖基础到高级的模型训练技巧,提供计算机视觉、自然语言处理和大型语言模型等领域的实践案例。内容还包括ONNX和TensorRT等推理部署框架的使用指南,展示了从模型开发到部署的完整流程。项目定期更新,配有环境配置说明,适合深度学习研究者和实践者参考学习。
pytorch-widedeep - 基于PyTorch的多模式深度学习工具包,结合表格、文本和图像数据
Githubpytorch-widedeep多模态深度学习宽和深模型开源项目机器学习表格数据
pytorch-widedeep是一个基于Google的Wide and Deep算法的开源项目,专为多模式数据集设计,支持结合表格、文本和图像数据。该工具包提供多种架构和自定义模型支持,如TabMlp、BasicRNN、TabTransformer等。详细的安装、快速入门和使用扩展步骤可在官方文档中找到。pytorch-widedeep适合多模式数据的深度学习研究和应用。
torchdistill - 模块化深度学习知识蒸馏框架
GithubPyYAMLtorchdistill开源项目模型训练深度学习知识蒸馏
torchdistill是一款模块化的深度学习知识蒸馏框架,通过编辑yaml文件即可设计实验,无需编写Python代码。支持提取模型中间表示,方便进行可重复的深度学习研究。通过ForwardHookManager,无需修改模型接口即可提取数据。支持从PyTorch Hub导入模块,并包含多种范例代码及预训练模型,适用于图像分类、目标检测、语义分割和文本分类等任务。
lightning-flash - 跨数据领域和任务的AI模型训练与处理解决方案
AIGithubPyTorchlightning-flash开源项目模型训练深度学习
Lightning Flash提供多任务和多数据领域的AI解决方案,用户只需三步即可完成数据加载、模型配置和微调。项目支持多种预训练模型和优化策略,简化深度学习工作流程,适用于各种数据域和任务类型。其功能包括模型预测、训练策略、优化器和调度器选择,以及自定义数据变换。Flash旨在让用户无需自行开发复杂的研究框架,即可在生产环境中应用AI模型。
TensorRT - 提升PyTorch推理效率的工具
CUDAGithubPyTorchTensorRTTorch-TensorRT安装开源项目
Torch-TensorRT将TensorRT的强大功能引入PyTorch,用户仅需一行代码即可显著提升推理性能。该工具支持在多个平台上安装,包括PyPI和NVIDIA NGC PyTorch容器。通过torch.compile或导出式工作流,用户可以高效优化和部署模型。Torch-TensorRT依赖CUDA和TensorRT,与Linux和Windows等多种平台兼容。提供丰富资源,包括教程、工具和技术讲座,供用户学习使用。
vision - TorchVision 计算机视觉库 提供数据集模型和图像处理功能
GithubPyTorchtorchvision图像处理开源项目深度学习计算机视觉
TorchVision是PyTorch生态系统的计算机视觉库,提供常用数据集、模型架构和图像变换功能。它支持torch张量和PIL图像后端,具备视频处理能力。该库同时提供Python和C++ API,适用于各种计算机视觉任务。TorchVision版本与PyTorch和Python版本兼容,持续更新以支持最新技术。
torchexplorer - 交互式PyTorch模型结构和训练过程可视化工具
GithubPyTorchTorchExplorer可视化工具开源项目模型调试神经网络
TorchExplorer是一个用于PyTorch模型可视化的开源工具,支持交互式检查网络中各nn.Module的输入、输出、参数和梯度。它可与Weights & Biases集成或独立运行,提供模型结构可视化、中间张量查看等功能。TorchExplorer有助于深入理解神经网络内部机制,简化复杂模型的调试和优化过程。
practicalAI-cn - PyTorch与Google Colab下的机器学习与深度学习实践
GithubGoogle ColabPyTorchpracticalAI开源项目机器学习深度学习
通过practicalAI-cn项目,任何水平的学习者都可以从基础到进阶掌握机器学习与深度学习技能。项目使用PyTorch实现核心算法,并提供多种notebooks,涵盖线性回归、卷积神经网络等多种模型。无需复杂的环境设置,可通过Google Colab直接运行,进行产品级的面向对象编程学习,助力从数据中获取有价值的见解。
pytorch-animeGAN - 基于PyTorch的轻量级GAN实现 快速将照片转换为动漫风格
AnimeGANGithub人工智能图像风格转换开源项目深度学习计算机视觉
pytorch-animeGAN是AnimeGAN的PyTorch实现,能够快速将真实照片转换为动漫风格。项目提供Hayao、Shinkai和Arcane等多种预训练模型,支持使用预训练模型进行推理或在自定义数据集上训练。除了图像转换,还支持视频转换和批量处理,并集成色彩迁移模块以保留原始图像颜色。该开源项目为开发者和研究人员提供了便捷的动漫风格转换工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号