Project Icon

bcms-bertic-ner

BERTić微调模型实现BCMS语言的高效命名实体识别

bcms-bertic-ner是一个针对波斯尼亚语、克罗地亚语、黑山语和塞尔维亚语(BCMS)的命名实体识别模型。该模型基于BERTić架构,通过多个标准和社交媒体数据集进行微调,可识别人名、地点、组织和其他实体。在开发数据上,模型达到91.38的F1分数,为BCMS语言的自然语言处理任务提供了有力工具。

pytorch-bert-crf-ner - PyTorch实现的BERT-CRF韩文命名实体识别器
BERTCRFGithubKoBERTNERPytorch开源项目
该项目是一个用PyTorch实现的BERT和CRF结合的韩文命名实体识别器,适用于PyTorch v1.2及Python 3.x环境。通过实际案例和详细日志展示该识别器的使用方法及其高效的韩文命名实体识别能力。借助于SKTBrain的KoBERT模型,本项目实现了容易上手的BERT-CRF命名实体识别系统。
ner-english-ontonotes-fast - 基于Flair框架的英文命名实体识别模型
FlairGithubHuggingfaceOntonotes命名实体识别开源项目模型深度学习自然语言处理
基于Flair框架开发的英文命名实体识别模型,支持识别人名、地点、组织机构等18类实体。模型在Ontonotes数据集上F1分数达到89.3%,通过Python API可快速集成使用。适用于各类英文文本的命名实体识别任务。
bert-base-turkish-cased - 巴伐利亚州立图书馆开发的土耳其语BERT预训练模型
BERTGithubHugging FaceHuggingface土耳其语开源项目机器学习模型自然语言处理
巴伐利亚州立图书馆MDZ数字图书馆团队开发的土耳其语BERT模型,使用多种语料库进行预训练。该模型基于35GB、44亿token的语料库,经过200万步训练,可通过Hugging Face Transformers库加载。它为土耳其语自然语言处理任务如词性标注和命名实体识别提供了基础支持。模型采用了OSCAR语料库、Wikipedia、OPUS语料库等多种资源,旨在提升土耳其语NLP任务的性能。
bert-turkish-text-classification - BERT土耳其语文本分类模型支持7大类别
BERTGithubHuggingfaceTurkish开源项目文本分类机器学习模型自然语言处理
BERT土耳其语文本分类模型通过微调Turkish BERT预训练模型而来,利用TTc4900数据集训练出支持7个类别的分类能力。涵盖世界、经济、文化等领域,开发者可借助Transformers库快速部署,实现土耳其语文本的高效分类。
roberta-large-ontonotes5 - RoBERTa-large模型在OntoNotes 5数据集上的高性能命名实体识别微调版本
GithubHuggingfaceRoBERTaT-NER命名实体识别开源项目模型模型微调自然语言处理
这是roberta-large在OntoNotes 5数据集上的微调模型,专门用于命名实体识别任务。在测试集上,该模型达到了0.909的F1分数(微观)、0.905的精确度和0.912的召回率。模型采用CRF层,最大序列长度128,经过15轮训练。用户可通过tner库轻松应用此模型。它在多种实体类型识别中表现优异,尤其擅长识别地缘政治区域、组织和人物。
wikineural-multilingual-ner - 融合神经网络和知识库的多语言命名实体识别模型
GithubHuggingfaceWikiNEuRal命名实体识别多语言开源项目模型维基百科自然语言处理
WikiNEuRal是一个创新的多语言命名实体识别模型,基于自动生成的高质量数据集训练而成。该模型支持9种语言,通过结合神经网络和知识库方法,在标准NER基准测试中实现了显著突破,F1分数比现有系统提高了6个点。模型集成了Transformers库,便于快速部署和使用。尽管在百科全书类文本上表现出色,但对新闻等其他文体的泛化能力可能有限。
bert-base-turkish-uncased - 巴伐利亚州立图书馆开源的土耳其语预训练BERT模型
BERTGithubHugging FaceHuggingface土耳其语开源项目模型深度学习自然语言处理
巴伐利亚州立图书馆MDZ团队开发的土耳其语BERT模型,基于35GB语料库训练而成,涵盖OSCAR、维基百科及OPUS等多个数据集,包含44亿个标记。该模型采用Google TPU v3-8进行200万步训练,完全兼容PyTorch-Transformers框架,可应用于词性标注、命名实体识别等土耳其语自然语言处理任务。
SpanMarkerNER - 命名实体识别的高效训练框架
BERTGithubHugging FaceNamed Entity RecognitionRoBERTaSpanMarker开源项目
SpanMarker是一个基于Transformer库的命名实体识别框架,支持BERT、RoBERTa和ELECTRA等编码器。框架提供模型加载、保存、超参数优化、日志记录、检查点、回调、混合精度训练和8位推理等功能。用户可以方便地使用预训练模型,并通过免费API进行快速原型开发和部署。
bert-base-chinese-ner - 传统中文BERT模型及自然语言处理工具
CKIP BERTGithubHuggingfacetransformers模型命名实体识别开源项目模型繁體中文自然语言处理
该项目提供传统中文BERT等模型和多功能自然语言处理工具,辅助词性标注、分词和实体识别。建议使用BertTokenizerFast以提高性能。CKIP开发和维护,详情使用说明见GitHub页面。
ner-german - 德语命名实体识别模型 集成Flair嵌入和LSTM-CRF技术
FlairGithubHuggingface命名实体识别序列标注开源项目德语模型自然语言处理
这是一个德语命名实体识别(NER)模型,基于Flair框架开发。模型可识别文本中的人名、地名、组织名和其他专有名词,在CoNLL-03德语修订版数据集上F1分数达87.94%。采用Flair嵌入和LSTM-CRF技术,提供高精度的德语NER功能。该模型易于使用,只需几行Python代码即可集成到NLP项目中。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号