Project Icon

bcms-bertic-ner

BERTić微调模型实现BCMS语言的高效命名实体识别

bcms-bertic-ner是一个针对波斯尼亚语、克罗地亚语、黑山语和塞尔维亚语(BCMS)的命名实体识别模型。该模型基于BERTić架构,通过多个标准和社交媒体数据集进行微调,可识别人名、地点、组织和其他实体。在开发数据上,模型达到91.38的F1分数,为BCMS语言的自然语言处理任务提供了有力工具。

bert-base-swedish-cased - 瑞典国家图书馆发布的BERT预训练语言模型用于提升瑞典语文本处理
GithubHuggingfaceHuggingface TransformersSwedish BERT命名实体识别开源项目模型瑞典文献预训练语言模型
瑞典国家图书馆推出的预训练BERT和ALBERT语言模型,适用于瑞典语文本处理。bert-base-swedish-cased采用标准参数优化,适合各种文本源;bert-base-swedish-cased-ner专注于命名实体识别;albert-base-swedish-cased-alpha为尝试版ALBERT模型。全部模型支持大小写区分与整体词遮盖功能,并提供PyTorch版本供下载。
UniNER-7B-all - 跨多数据集的命名实体识别开源模型
GithubHuggingfaceUniNER命名实体识别大模型开源项目模型研究自然语言处理
UniNER-7B-all模型结合ChatGPT生成的Pile-NER-type和Pile-NER-definition数据及Universal NER基准中40个数据集进行训练,适合多数据集的命名实体识别研究。模型在排除CrossNER和MIT数据集的情况下进行OOD评估。详细的使用指南和模型信息可以通过相关论文及GitHub仓库获得,模型适用于研究目的,遵循CC BY-NC 4.0许可协议。
distilcamembert-base-ner - 法语命名实体识别模型,推理时间减半
CamemBERTDistilCamemBERT-NERGithubHuggingface实体识别开源项目模型模型优化法语
DistilCamemBERT-NER针对法语命名实体识别进行微调,与CamemBERT相比推理时间缩短一半但能耗保持不变。采用wikiner_fr数据集,综合F1得分达98.18%。在PER、LOC、ORG类别上,性能优于多语种与Flair法语模型,提供高效的文本处理解决方案。
ner-english-large - 基于FLERT技术的英语命名实体识别开源模型
FlairGithubHuggingface命名实体识别序列标注开源项目模型深度学习自然语言处理
ner-english-large是基于Flair框架的英语命名实体识别模型,采用FLERT技术和XLM-R嵌入。该模型可识别人名、地点、组织和其他实体,F1分数为94.36。它易于集成,适用于多种NLP任务,为研究人员和开发者提供了实用的英语文本分析工具。
small-e-czech-finetuned-ner-wikiann - 捷克语命名实体识别模型精细化
GithubHuggingfacesmall-e-czech-finetuned-ner-wikiann开源项目数据集模型精度训练
这是一个基于Seznam/small-e-czech的微调模型,专用于wikiann数据集的捷克语命名实体识别。模型在精度、召回率和F1分数上分别达到0.8713、0.8970和0.8840,总体准确率为0.9557。项目采用Transformer、PyTorch等技术框架,使用线性学习率调度器,经过20个epoch的训练。适合需要捷克语文本命名实体识别的开发者和研究人员使用。
ner-english-ontonotes - Flair框架英语命名实体识别模型支持18类实体
FlairGithubHuggingface命名实体识别序列标注开源项目机器学习模型自然语言处理
这是一个基于Flair框架的英语命名实体识别模型,能够识别18种实体类型,包括人名、地点和组织等。模型采用Flair embeddings和LSTM-CRF架构,在Ontonotes数据集上的F1分数为89.27%。该模型可应用于多种自然语言处理任务,并且可以通过简单的Python代码实现NER预测。
xlm-roberta-large-finetuned-conll03-german - 基于XLM-RoBERTa的大型多语言模型优化德国文本的命名实体识别
GithubHuggingfaceXLM-RoBERTa命名实体识别多语言模型开源项目模型模型训练自然语言处理
该项目展示了一种基于大规模多语言数据训练的XLM-RoBERTa模型,专注于德语文本的命名实体识别和词性标注,能够高效解析德语文本,并通过内置管道进行自然语言理解任务的方便集成。
quote-model-BERTm-v1 - BERT多语言模型在引用识别任务上的高性能微调应用
BERTGithubHuggingface多语言模型开源项目文本分类机器学习模型自然语言处理
quote-model-BERTm-v1是一个基于BERT多语言模型微调的引用识别工具。该模型在评估集上表现优异,准确率达93.14%,F1分数为0.8676。通过Adam优化器和线性学习率调度器,经过3轮训练而成。这一模型专门用于多语言环境下的高精度引用识别,可广泛应用于需要处理多语种文本引用的场景。
xlm-roberta-large-finetuned-conll03-english - XLM-RoBERTa基于命名实体识别模型支持百余种语言
GithubHuggingfaceXLM-RoBERTa命名实体识别多语言模型开源项目模型自然语言处理迁移学习
xlm-roberta-large-finetuned-conll03-english是基于XLM-RoBERTa的多语言命名实体识别模型,预训练涵盖百余种语言,并经英语CoNLL-2003数据集微调。适用于命名实体识别、词性标注等标记分类任务,具备出色的多语言处理能力。模型由Facebook AI团队开发,在Hugging Face平台开放使用。使用时需注意潜在偏见和局限性。
Italian_NER_XXL - 意大利实体识别模型,识别52类实体
BERTGithubHuggingfaceItalian_NER_XXL实体识别开源项目更新模型自然语言处理
该人工智能模型能够识别52类意大利语实体,具备79%的准确率,并基于BERT技术进行持续更新。其在法律、金融和隐私等领域表现出色,提供多功能的实体识别支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号