Project Icon

d2l-ai-solutions-manual

《动手学深度学习》习题解答与代码实现

该项目为《动手学深度学习》一书提供全面的习题解答。内容包括详细的代码实现和运行截图,涵盖从预备知识到自然语言处理的各个章节。项目提供在线阅读、环境配置指南和协作规范,旨在帮助初学者更好地理解和实践深度学习概念。作为学习补充资料,本项目特别适合希望将理论知识应用于实践的学习者。

d2l-zh - 深度学习的全面入门指南
D2L.aiGithub工程技能开源项目数学原理深度学习
《动手学深度学习》是一个免费在线资源,提供概念讲解、数学背景知识和实际代码示例,旨在帮助读者掌握深度学习的原理和应用。该项目致力于培养读者成为能够理解数学原理并实现和改进方法的深度学习应用科学家,适合自学和教学使用,包含可运行的代码和工程技能训练。
dlwpt-code - 深入浅出PyTorch深度学习指南
Deep Learning with PyTorchGithubPyTorch开源项目机器学习深度学习编程
《Deep Learning with PyTorch》通过实际项目展示深度学习的基础知识,适合希望掌握PyTorch的开发者、计算机科学家、数据科学家及相关专业学生。书中提供了对深度学习的直观理解,并深入探讨PyTorch的部分功能,适合具备编程基础的读者。作者团队拥有丰富的实践经验和开源项目贡献,确保内容实用且前沿。
Dive-into-DL-PyTorch - PyTorch实现与教程
项目将《动手学深度学习》原书的MXNet代码实现改为PyTorch,适合对深度学习感兴趣并希望使用PyTorch的用户。无需深度学习或机器学习背景,只需基础数学和编程知识。项目包含Jupyter Notebook代码和Markdown文档,通过Docsify部署,方便在线或本地浏览和运行。
d2l-en - 互动深度学习教程,结合代码、数学与讨论
D2L.aiGithubJupyter笔记本开源书籍开源项目机器学习深度学习
这本开源书籍使用Jupyter笔记本无缝整合深度学习的概念、背景和代码,免费提供给所有人。书中包含可运行代码、技术深度和社区讨论,帮助读者解决实际问题并成长为应用机器学习科学家。
d2l-pytorch - MXNet代码转换为PyTorch实现的指南
Dive Into Deep LearningGithubPyTorch卷积神经网络开源项目深度学习线性神经网络
本项目基于《Dive Into Deep Learning》书籍,将MXNet代码转换为PyTorch实现。内容包括安装指南、线性神经网络、多层感知器、卷积神经网络、现代卷积网络、循环神经网络和注意力机制等章节。提供详细教程和示例代码,适合使用PyTorch进行深度学习的开发者。建议克隆仓库或使用nbviewer查看notebook文件。
PyTorch-Tutorial-2nd - 涵盖深度学习应用与推理部署的知识库
GithubPyTorch大语言模型开源项目深度学习自然语言处理计算机视觉
本书基于PyTorch,系统性涵盖深度学习的核心知识,包括计算机视觉、自然语言处理、大语言模型等实战案例,详解ONNX和TensorRT推理部署框架,为读者提供从基础到应用的完整指导,帮助快速掌握PyTorch并实现项目落地。适合AI自学者、产品经理及跨领域人士阅读。
Dive-into-DL-TensorFlow2.0 - TensorFlow 2.0 深度学习中文教程与代码实现
GithubTensorFlow2代码重构动手学深度学习开源项目机器学习深度学习
本项目将《动手学深度学习》一书中的MXNet代码改为TensorFlow 2.0实现,提供完整的中文学习资源,涵盖线性回归、卷积神经网络、循环神经网络等核心内容。适合对深度学习感兴趣的初学者,只需掌握基础数学和Python编程即可入门。
practicalAI-cn - PyTorch与Google Colab下的机器学习与深度学习实践
GithubGoogle ColabPyTorchpracticalAI开源项目机器学习深度学习
通过practicalAI-cn项目,任何水平的学习者都可以从基础到进阶掌握机器学习与深度学习技能。项目使用PyTorch实现核心算法,并提供多种notebooks,涵盖线性回归、卷积神经网络等多种模型。无需复杂的环境设置,可通过Google Colab直接运行,进行产品级的面向对象编程学习,助力从数据中获取有价值的见解。
deep-learning-v2-pytorch - 深度学习教程与项目实战指南
Deep LearningGithubPyTorch卷积神经网络开源项目生成对抗网络神经网络
本仓库提供 Udacity 深度学习 v7 纳米学位课程的相关资料,包括各种深度学习主题的教程笔记本,涉及卷积神经网络、循环神经网络和生成对抗网络等模型的实现。内容涵盖权重初始化、批量归一化等技术,用户还可以访问项目起始代码,并学习在 AWS SageMaker 上部署模型。
pytorch-deep-learning - 深入PyTorch的深度学习实用教程
GithubPyTorch开源项目深度学习神经网络计算机视觉迁移学习
本课程涵盖从基础到高级的深度学习概念,通过实践教学与丰富的视频材料,讲解PyTorch操作和应用。包括神经网络分类、计算机视觉和数据集处理等主题,适合希望深化机器学习理解和应用的学习者。课程包括最新的PyTorch 2.0教程,确保内容的时效性和专业性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号