Project Icon

minilm-uncased-squad2

MiniLM抽取式问答模型在SQuAD 2.0数据集实现76分精确匹配

MiniLM-L12-H384-uncased是一款专注于英文抽取式问答的开源模型。经SQuAD 2.0数据集训练后,模型可从文本中精确定位答案信息,并通过Haystack或Transformers框架便捷部署。目前在验证集评测中展现出优秀的问答性能,适合搭建生产环境的问答应用。

bert-large-cased-whole-word-masking-finetuned-squad - 全词掩码BERT大型模型在SQuAD数据集上优化的问答系统
BERTGithubHuggingface开源项目微调模型自然语言处理问答系统预训练模型
BERT-large-cased-whole-word-masking-finetuned-squad是一个基于全词掩码技术的大型语言模型。该模型包含24层、1024维隐藏层和16个注意力头,共3.36亿参数。在BookCorpus和Wikipedia数据集预训练后,模型在SQuAD数据集上进行了微调,专门用于问答任务。采用双向Transformer架构,通过掩码语言建模和下一句预测任务训练,能有效理解文本语义并回答上下文相关问题。
mMiniLMv2-L12-H384-distilled-from-XLMR-Large - 轻量级多语言自然语言处理模型
GithubHuggingfaceMicrosoftMiniLMv2多语言模型开源项目机器学习模型自然语言处理
mMiniLMv2-L12-H384-distilled-from-XLMR-Large是一个基于Microsoft UniLM项目的多语言自然语言处理模型。该模型通过知识蒸馏技术从XLM-R大型模型中提取知识,在维持高性能的同时大幅缩小了模型体积。作为一个轻量级模型,它能够适应文本分类、问答系统和序列标注等多种NLP任务,尤其适合在计算资源有限的环境中使用。
nli-MiniLM2-L6-H768 - 基于MiniLM2的自然语言推理跨编码器模型
CrossEncoderGithubHuggingfaceMiniLMv2SentenceTransformers开源项目模型自然语言推理零样本分类
nli-MiniLM2-L6-H768是一个基于SentenceTransformers框架的跨编码器模型,专门用于自然语言推理任务。该模型在SNLI和MultiNLI数据集上训练,可以对给定的句子对判断矛盾、蕴含和中性三种语义关系。除了传统的NLI任务,它还支持零样本分类,适用范围广泛。模型采用紧凑的MiniLM2结构,在保持准确性的同时提供了良好的性能。
deberta-v3-large-squad2 - DeBERTa V3大规模模型设计,问答任务表现卓越
GithubHaystackHuggingfaceSQuAD 2.0deberta-v3-large开源项目提取式问答模型问答
该DeBERTa模型基于SQuAD2.0数据集进行了微调,专注于提取式问答任务。通过Haystack和Transformers框架的整合,模型在检索和匹配性能上表现优异,经多种数据集验证显示出高准确性。
multilingual-MiniLMv2-L6-mnli-xnli - 轻量级多语言自然语言推理与分类模型
GithubHuggingfaceMiniLMv2多语言翻译开源项目机器学习模型自然语言推理零样本分类
MiniLMv2是一款支持100多种语言的自然语言推理模型,采用知识蒸馏技术从XLM-RoBERTa-large模型优化而来。经过XNLI和MNLI数据集的微调训练,该模型在XNLI测试集达到71.3%的平均准确率。相比原始模型,具备更低的资源消耗和更快的运行速度,适合跨语言迁移学习应用。
all-MiniLM-L12-v1 - 基于MiniLM的句子向量化与语义搜索模型
GithubHuggingfacesentence-transformers句子向量开源项目机器学习模型自然语言处理语义搜索
all-MiniLM-L12-v1是一个开源的句子向量化模型,基于MiniLM架构开发。该模型通过10亿对句子数据训练而成,可将文本转化为384维向量表示,广泛应用于文本聚类、语义检索等场景。模型支持多种调用方式,兼容sentence-transformers和HuggingFace框架,为开发者提供便捷的文本向量化解决方案。
t5-small-squad-qag - 基于t5-small的文本智能问答生成系统
GithubHuggingfaceSQuAD数据集T5模型lmqg开源项目模型自然语言处理问答生成
t5-small-squad-qag是一个经过优化的英文智能问答系统,通过lmqg/qag_squad数据集训练,BERTScore评分达92.76%。系统支持lmqg和transformers库集成,可实现文本分析和问答对自动生成,主要应用于教育和内容创作领域。
all_miniLM_L6_v2_with_attentions - 基于MiniLM的句子相似度搜索增强模型
GithubHuggingfaceMiniLMONNXQdrant句子相似度开源项目模型模型嵌入
基于MiniLM-L6-v2架构开发的句子相似度模型,通过整合注意力权重机制增强了文本搜索能力。模型采用ONNX格式发布,可与FastEmbed库无缝集成,支持稀疏嵌入生成,在大规模文本检索场景中表现出色。该模型针对BM42搜索进行了特别优化,能有效提升检索准确度。
mdeberta-v3-base-squad2 - 基于DeBERTa V3架构的多语言问答模型
DeBERTaGithubHuggingfaceSQuAD多语言模型开源项目模型自然语言处理问答系统
这是一个支持100多种语言的问答模型,基于DeBERTa V3架构开发。模型在SQuAD2.0数据集上经过微调,F1评分达到84.01%,可实现高质量的文本抽取式问答。采用ELECTRA预训练方法和优化的嵌入技术,适用于多语言自然语言处理任务。
bert-mini-finetune-question-detection - BERT-mini模型实现关键词与问题查询的精准分类
BERTGithubHaystackHuggingfaceKaggle开源项目查询分类模型神经搜索
该项目基于BERT-mini开发了一个用于区分关键词查询和问题/陈述查询的模型。在Haystack框架中,该模型实现了99.7%的测试准确率,能够准确将问题路由至Reader分支,提升结果精确度并降低计算开销。模型可通过简洁的Python代码轻松集成,适用于需要高效查询分类的神经搜索系统。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号