Project Icon

superpoint_transformer

高效3D场景语义和全景分割的超点变换器

Superpoint Transformer 是一种超点 transformer 架构,适用于大规模 3D 场景的语义分割。通过自注意机制和层次化超点结构,它能多尺度挖掘超点间关系,性能卓越。同时,SuperCluster 将全景分割任务转化为超点图聚类任务,能在单个 GPU 上处理大规模场景。项目亮点包括显著的SOTA表现、快速训练和预处理等。点击查看更多详情及项目更新。

awesome-transformers-in-medical-imaging - Transformer在医学影像分析中的最新应用进展
GithubTransformer分割医学图像分析开源项目深度学习计算机视觉
本项目汇总了Transformer在医学影像分析领域的最新研究成果,包括图像分割、分类、重建等多个任务。资源库按时间顺序整理相关论文和开源实现,为研究人员提供全面参考。内容定期更新,旨在促进Transformer在医学影像分析中的应用与发展。
mask2former-swin-large-coco-panoptic - 基于Transformer架构的高效图像分割模型
COCO数据集GithubHuggingfaceMask2Former图像分割开源项目模型深度学习视觉模型
Mask2Former-Swin-Large是一个基于COCO数据集训练的图像分割模型,通过多尺度可变形注意力和掩码注意力机制,实现了实例、语义和全景分割的统一处理。相比MaskFormer具有更高的性能和计算效率
semantic-segmentation - 提供丰富数据集和易于定制的语义分割模型
GithubPyTorchSOTASemantic Segmentation开源项目数据集模型库
该项目提供易于使用和定制的SOTA语义分割模型,支持多种任务和数据集。适合高精度和定制应用场景,涵盖场景解析、人类解析、人脸解析等任务。特点包括多种主干网络和分割模型,支持PyTorch、ONNX、TFLite等框架的推理和导出。即将迎来重大更新,包括新的训练流程、预训练模型、教程和分布式训练支持。用户可通过详细文档和示例轻松使用并配置定制数据集,实现高效的语义分割。
mit-b2 - 高效语义分割的简单Transformer设计
GithubHuggingfaceSegFormerTransformer图像分类开源项目机器学习模型语义分割
SegFormer b2是一个在ImageNet-1k上预训练的编码器模型,采用分层Transformer结构。该模型专为语义分割任务设计,结合了简单高效的架构和出色的性能。虽然此版本仅包含预训练的编码器部分,但它为图像分类和语义分割的微调提供了坚实基础。SegFormer的创新设计使其在多个计算机视觉任务中展现出强大潜力。
GNT - 使用Transformer重建和渲染NeRF模型
GNTGithubNeRFtransformer图像重建开源项目渲染
Generalizable NeRF Transformer (GNT) 是一个用于高效重建和渲染神经辐射场的纯Transformer架构。它通过视图Transformer和射线路径Transformer两个阶段完成场景表示和渲染。GNT在跨场景训练中展示了其在多个数据集上优异的性能和普遍适用性。
ViTAE-Transformer-Remote-Sensing - 遥感图像解释的视觉变压器模型集合
Github图像分割开源项目深度学习目标检测计算机视觉遥感
ViTAE-Transformer-Remote-Sensing项目致力于遥感图像解释领域的视觉变压器模型研究。该项目涵盖遥感预训练、场景识别、语义分割和目标检测等多项任务,提出了RVSA和MTP等创新模型架构和训练方法。项目还开发了SAMRS大规模遥感分割数据集。这些成果有助于推进遥感基础模型的发展,为遥感应用提供技术支持。项目成果包括遥感预训练研究、场景识别模型、语义分割技术和目标检测算法。RVSA和MTP等创新架构提升了模型性能和效率。SAMRS数据集的开发为遥感分割任务提供了大规模训练资源。
patchwork-plusplus - 基于3D点云的高效地面分割算法Patchwork++
3D感知GithubPatchwork++地面分割开源项目机器人技术点云处理
Patchwork++是Patchwork算法的改进版,专注于3D点云地面分割。该算法具有快速、稳健和自适应特性,有效解决了欠分割问题。项目提供C++、Python和ROS2支持,适用于多种开发环境。凭借在多个数据集上的出色表现,Patchwork++成为自动驾驶和机器人导航领域的重要工具。
3D-OVS - 无需标注的开放词汇3D场景分割新方法
3D分割CLIP特征GithubTensoRF开放词汇开源项目弱监督学习
3D-OVS是一种创新的弱监督3D开放词汇分割方法,仅依靠文本描述即可实现3D场景的精准分割。该技术融合TensoRF重建与CLIP特征提取,通过提示工程和DINO特征优化,提高了3D场景的语义理解能力。这一方法将3D视觉与自然语言处理有机结合,为多个领域的应用提供了新的可能性。
SeeSR - 基于语义感知的实景图像超分辨率方法
GithubSeeSR图像超分辨率开源项目扩散模型真实世界图像语义感知
SeeSR是一种新型语义感知实景图像超分辨率技术,结合稳定扩散模型和语义信息提升低分辨率图像质量。该方法已被CVPR2024接收并在GitHub开源。SeeSR可处理多种场景图像,并支持快速推理。项目提供预训练模型、测试数据集和使用说明,便于研究和应用。此外,项目还包含DAPE和SeeSR模型的训练指南,以及用于生成训练数据的工具。SeeSR采用tiled vae方法节省GPU内存,并提供Gradio演示界面。该技术在多个真实世界图像数据集上展现出优异性能。
Segment-Any-Point-Cloud - 视觉基础模型驱动的通用点云序列分割框架
GithubSeal开源项目点云分割神经网络自监督学习计算机视觉
Seal是一种自监督学习框架,通过利用视觉基础模型的知识来分割多样化的点云序列。该框架在表示学习阶段强调空间和时间一致性,实现了高效的跨模态知识迁移。Seal无需依赖2D或3D标注,直接从视觉模型中提取知识,展现出优秀的可扩展性、一致性和泛化能力。它可应用于各类点云数据集,包括真实与合成、高低分辨率、大小规模以及干净和受损数据。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号