Project Icon

dynablox

基于体积映射的复杂环境动态对象实时检测方法

Dynablox是一种基于在线体积映射的实时动态对象检测方法,针对复杂环境中的多样化移动物体。该开源项目提供完整的安装指南、数据集和运行示例,便于研究人员复现和扩展。Dynablox在准确性和实时性方面表现优异,已被NVIDIA的nvblox项目采用,可利用GPU加速实现高分辨率检测。其应用领域包括自动驾驶和机器人导航等。

Fast-BEV - 新一代鸟瞰视角感知系统
Fast-BEVGithub开源项目深度学习自动驾驶计算机视觉鸟瞰图感知
Fast-BEV是一种先进的鸟瞰视角感知系统,专注于3D目标检测和BEV语义分割。该项目针对自动驾驶等应用场景进行了优化,提供多种模型配置和CUDA、TensorRT加速支持。Fast-BEV不仅在性能和速度方面表现卓越,还提供了完整的安装指南、数据准备流程和训练方法,为研究人员和开发者提供了强大的工具。作为领先的感知算法和计算机视觉解决方案,Fast-BEV为鸟瞰视角感知任务设立了新的标准。
grounding-dino-base - 实现开放集目标检测的创新模型
GithubGrounding DINOHuggingface开源项目模型深度学习物体检测计算机视觉零样本学习
Grounding DINO是一种创新的开放集目标检测模型,结合DINO与文本预训练技术。通过整合文本编码器,该模型将闭集目标检测扩展为零样本目标检测。在COCO数据集上,Grounding DINO达到了52.5 AP的性能。此模型支持研究人员直接进行零样本目标检测,无需额外的标记数据即可识别图像中的物体。
bevfusion - 具有统一鸟瞰图表示的多任务多传感器融合
3D目标检测BEVFusionGithub多传感器融合开源项目自主驾驶鸟瞰图表示
BEVFusion是一个有效的多任务多传感器融合框架,通过在共享的鸟瞰视角表示空间中统一多模态特征,解决了传统点级融合方法的局限性。其优化的视角转换和显著降迟特性使其在各种3D感知任务中表现出色。该框架在提升3D物体检测和BEV图分割性能的同时,大幅降低计算成本,树立了新行业标杆。
LeYOLO - 可扩展高效的目标检测CNN架构
COCO数据集GithubLeYOLO开源项目目标检测神经网络计算效率
LeYOLO是一种新型目标检测模型系列,通过创新的CNN架构设计实现了计算效率与准确性的优化平衡。该模型引入高效主干网络缩放、快速金字塔架构网络和解耦网络中的网络检测头,大幅降低计算负载。在COCO验证集上,LeYOLO-Small仅使用4.5 GFLOP就达到38.2%的mAP,比YOLOv9-Tiny减少42%计算量。LeYOLO系列具有强大可扩展性,适用于从超低计算需求(<1 GFLOP)到高效高性能(>4 GFLOPs)的多种场景。
yolov10x - 高效的实时端到端物体检测工具
GithubHuggingfacePyTorchYOLOv10对象检测开源项目模型深度学习计算机视觉
YOLOv10是一个高效的端到端物体检测开源项目,支持在COCO等数据集上进行准确的训练和验证。通过整合PyTorch模型资源,用户可简便地安装和应用。本项目支持从预训练模型进行迁移学习,适合多种计算机视觉应用需求,是追求速度与精度的理想选择。
mmyolo - YOLO算法与实时对象识别工具包
GithubMMYOLOOpenMMLabYOLO系列算法实例分割开源项目目标检测
MMYOLO是一个基于PyTorch和MMDetection的开源工具包,专注于YOLO系列算法,适用于对象检测和旋转对象检测任务。该项目提供统一的基准测试、详细文档和模块化设计,便于用户构建和扩展模型。支持YOLOv5实例分割和YOLOX-Pose等功能,显著提升训练速度,并在RTMDet模型上实现了先进的性能。
boxx - 高效Python工具箱,助力科学计算和计算机视觉调试
Box-XGithubPython工具箱开源项目科学计算计算机视觉
Box-X是一款为Python开发者设计的高效构建与调试工具箱,特别适用于科学计算和计算机视觉。它兼容Linux、macOS和Windows平台,并支持Python 2/3环境(包括CPython、IPython、Spyder和Notebook)。主要功能包括变量打印和传输、矩阵及张量可视化、复杂结构的树状显示以及多进程加速。用户可通过Binder在线互动教程或本地Jupyter Notebook查看详细教程,推荐通过源代码安装以确保版本的及时更新。
yolov3 - 开源视觉AI技术
GithubUltralyticsYOLOv3人工智能图像识别开源项目目标检测
YOLOv3是Ultralytics公司开发的开源视觉AI技术,汇集了广泛的研究和丰富经验。平台包含详尽的文档和教程,支持社区讨论,简化学习和实施过程。此技术因其出色性能和易用性,在全球范围内被广泛采用,帮助用户迅速部署并有效训练模型。
EmbodiedScan - 全面多模态3D感知套件,提高具身AI的理解能力
3D感知EmbodiedScanGithubMMScan多模态开源项目深度学习
EmbodiedScan及其系列如MMScan是专为多模态3D感知设计的开放数据集与基准,用于深入理解第一人称3D场景。包含超过5000次扫描、100万RGB-D视图、语言提示和160k 3D定向框。基于此数据库的Embodied Perceptron展示了在3D感知和语言定位中的优秀表现,适用于计算机视觉和机器人领域。通过我们的演示和基准测试,了解详细信息和应用案例。
ravens - PyBullet仿真中的视觉机器人操纵任务集合
GithubPyBulletRavensTransporter Networks开源项目强化学习机器人操作
Ravens项目提供了一系列在PyBullet中模拟的任务,专注于学习基于视觉的机器人抓取与放置操作。项目包含一个类似Gym的API和10个桌面排布任务,每个任务包括专家演示脚本和奖励函数,用于模仿学习和强化学习。该项目展示了Transporter Network的效率,通过重新排列深度特征来推断视觉输入的空间位移,从堆叠积木到处理变形绳索,学习速度和推广能力均优于基准方法。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号