Project Icon

convnextv2-base-22k-384

基于ImageNet-22K数据集的ConvNeXt V2全卷积模型

ConvNeXt V2模型通过FCMAE框架和新引入的GRN层提高卷积网络在图像分类中的效果,基于ImageNet-22K数据集训练,支持高分辨率和出色性能表现,适用于多种识别任务,可用于直接应用或微调以满足特定需求。

dinov2 - 通过无监督学习构建强大视觉特征的先进方法
DINOv2GithubVision Transformer开源项目自监督学习视觉特征计算机视觉
DINOv2是一种先进的无监督视觉特征学习方法,在1.42亿张未标注图像上预训练后生成高性能、鲁棒的通用视觉特征。这些特征可直接应用于多种计算机视觉任务,仅需简单线性分类器即可实现优异效果。DINOv2提供多种预训练模型,包括带寄存器的变体,在ImageNet等基准测试中表现卓越。
VNext - 高级视频实例分割框架,支持在线和离线模式
GithubIDOLInstMoveSeqFormerVNext开源项目视频实例分割
VNext是一个基于Detectron2的视频实例识别框架,提供先进的在线和离线实例分割算法及对象中心的视频分割运动模型。用户可参考官方教程进行安装、训练和评估。最新算法InstMove、IDOL和SeqFormer在国际会议上获得认可并取得优异成绩。
DenseNet - DenseNet高效内存卷积网络
CIFAR-10CVPR 2017DenseNetGithubImageNet开源项目模型
DenseNet通过每层与其他层的直接连接,提升图像识别准确性并减少参数和计算量。最新版本内存效率更高,支持CIFAR和ImageNet数据集,提供PyTorch、TensorFlow、Keras等深度学习框架的实现代码,适合研究和应用。
Awesome-Backbones - 图像分类的主干网络库及其使用教程
Awesome-BackbonesGithubPyTorch图像分类开源项目模型训练预训练权重
提供丰富的图像分类主干网络,包括TinyViT、DeiT3、EdgeNeXt、RevVisionTransformer等,兼容Pytorch 1.7.1+及Python 3.6+。项目包含环境搭建、数据集准备、训练和评估的详细教程,适合科研和实际应用,提升图像分类模型性能。提供快速开始指南和预训练权重,帮助开发者高效部署与测试。
Depth-Anything-V2 - 单目深度估计新突破,高精度与快速推理并重
Depth Anything V2Github开源项目深度估计计算机视觉预训练模型
Depth-Anything-V2是单目深度估计领域的新进展。该模型在细节表现和鲁棒性上显著优于V1版本,并在推理速度、参数量和深度精度方面超越了基于SD的模型。项目提供四种预训练模型,适用于相对和度量深度估计,可处理图像和视频。此外,发布的DA-2K基准为深度估计研究设立了新标准。
models - 探索最先进的机器学习模型与技术
GithubONNX Model Zoo图像分类对象检测开源项目机器学习模型语言处理
ONNX Model Zoo是一个开源平台,汇集了各种预训练且处于技术前沿的机器学习模型,涵盖计算机视觉、自然语言处理等多个领域。旨在为开发者、研究人员和技术爱好者提供高效实用的AI工具,加速机器学习技术的应用和发展。此外,ONNX Model Zoo支持多种框架和工具,通过共同的文件格式和操作集,促进了AI开发的灵活性和互操作性。平台以开放性和社区驱动的特性为己任,含有诸如图像分类、对象检测等主要模型,并通过简易接口及高级工具满足不同用户需求,使其既适应初学者也满足专业人士的需求。
ControlNeXt - 高效可控生成框架 实现图像视频多样化控制
ControlNeXtGithub人工智能可控生成图像生成开源项目视频生成
ControlNeXt是一个创新的可控生成框架,支持图像和视频的多样化控制。该项目大幅减少可训练参数,提高收敛速度和效率。基于Stable Diffusion等先进模型,ControlNeXt实现了包括人体姿态控制在内的多种生成任务。此外,它还可与LoRA等技术结合,提供更灵活、稳定的生成体验。
ml-fastvit - 高效混合视觉Transformer模型用于图像分类
FastViTGithub图像分类开源项目模型性能结构重参数化视觉Transformer
FastViT是一种采用结构重参数化技术的混合视觉Transformer模型。该模型在ImageNet-1K数据集上实现了准确率和延迟的良好平衡,提供多个变体以适应不同应用场景。FastViT在iPhone 12 Pro上的基准测试显示出优秀的移动端性能。项目开源了预训练模型、训练评估代码和使用文档。
LITv2 - 基于HiLo注意力的快速视觉Transformer
GithubHiLo注意力LITv2图像分类开源项目目标检测视觉Transformer
LITv2是一种基于HiLo注意力机制的高效视觉Transformer模型。它将注意力头分为两组,分别处理高频局部细节和低频全局结构,从而在多种模型规模下实现了优于现有方法的性能和更快的速度。该项目开源了图像分类、目标检测和语义分割任务的预训练模型和代码实现。
MDT - MDTv2图像合成模型:更快收敛和卓越性能
GithubMasked Diffusion Transformer人工智能图像合成开源项目深度学习计算机视觉
MDTv2是一种先进的深度学习图像合成模型,在ImageNet数据集上实现了1.58的FID分数,创造新的业界标准。该模型采用掩码潜在建模技术,提高了图像语义理解能力,学习速度比先前模型快10倍以上。MDTv2在图像生成质量和训练效率方面都有显著提升,为计算机视觉和人工智能领域带来了新的可能性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号