Project Icon

wav2vec2-large-xlsr-53-spanish

Wav2Vec2模型在西班牙语语音识别中的表现

项目在Common Voice ES测试集上测试了Wav2Vec2模型的性能,语音识别错误率为17.6%。此项目使用Facebook发布的模型,与Torchaudio结合进行数据预处理,实现了语音到文本的转化,展示了语音处理与自动语音识别领域的最新进展。

wav2vec2-large-xlsr-53-spanish - 基于XLSR-53微调的西班牙语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型西班牙语语音识别
此西班牙语语音识别模型基于Facebook的wav2vec2-large-xlsr-53,在Common Voice数据集上微调。模型在测试集上达到8.82%词错误率和2.58%字符错误率,可直接处理16kHz采样的语音输入。项目提供使用示例和评估脚本,便于用户应用和评估。模型采用16kHz采样率,无需额外语言模型即可使用。项目还包含详细的使用说明和评估方法,有助于研究人员和开发者快速集成和测试。
Wav2Vec2-Large-XLSR-53-catalan - 加泰罗尼亚语自动语音识别模型性能表现
CatalanCommon VoiceGithubHuggingfaceWav2Vec2开源项目模型训练语音识别
项目在Common Voice数据集上微调了Facebook的Wav2Vec2-Large-XLSR-53模型,专注于加泰罗尼亚语的自动语音识别,达到8.11%的WER。支持直接使用无需语言模型的音频处理,并提供使用和评估的详细方法和代码示例。模型训练中处理内存问题的策略也有介绍。用户可考虑更新版本以获取更好的性能。
wav2vec2-large-es-voxpopuli - Wav2Vec2大型西班牙语语音识别模型基于VoxPopuli预训练
GithubHuggingfaceVoxPopuliWav2Vec2开源项目模型自动语音识别语音语料库预训练模型
Wav2Vec2-Large-VoxPopuli是一个基于Facebook Wav2Vec2技术的西班牙语语音识别模型。该模型利用VoxPopuli语料库中的无标签西班牙语音频数据进行预训练,能够有效学习语音结构。模型适用于自动语音识别任务,可通过微调提升特定领域性能。采用CC-BY-NC-4.0许可证,为语音处理研究和开发提供了有力工具。
wav2vec2-large-xlsr-53-portuguese - XLSR-53微调的葡萄牙语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型葡萄牙语语音识别
此语音识别模型通过在Common Voice 6.1数据集上微调XLSR-53模型,专门针对葡萄牙语优化。在测试中,模型表现优异,词错误率为11.31%,字符错误率为3.74%。模型设计用于处理16kHz采样率的语音输入,可独立使用或与语言模型结合以提升性能。项目还包含详细的使用说明和评估工具,方便研究者和开发者快速应用和测试。
wav2vec2-xls-r-1b-ca-lm - 基于先进技术的加泰罗尼亚语语音识别模型
GithubHuggingfacewav2vec2-xls-r-1b-ca-lm开源项目数据集模型模型评估自动语音识别训练过程
此模型是在facebook/wav2vec2-xls-r-300m的基础上微调的,专注于加泰罗尼亚语自动语音识别。通过使用Mozilla Common Voice 8.0及其他数据集进行优化训练,该模型在加泰罗尼亚口音识别上展现出高效性能。适用于需要精准语音识别的场景,尽管资源稀缺的方言可能效果较差。模型精度得益于优化后的学习率和批量大小,是语音识别技术发展的重要里程碑。
wav2vec2-large-xlsr-53-esperanto - 基于XLSR-53微调的世界语语音识别模型
Common VoiceEsperantoGithubHuggingfaceWav2Vec2XLSR开源项目模型语音识别
该项目基于wav2vec2-large-xlsr-53模型,使用世界语Common Voice数据集进行微调,开发了一个世界语语音识别模型。模型在测试集上实现12.31%的词错误率(WER),支持16kHz采样率的语音输入。它可直接应用于语音识别任务,无需额外语言模型。项目详细介绍了模型的使用方法和评估过程。
wav2vec2-xls-r-1b-portuguese - XLS-R 1B微调的葡萄牙语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLS-R开源项目模型葡萄牙语语音识别
该项目基于XLS-R 1B模型微调,专注于葡萄牙语语音识别。模型在Common Voice 8.0等多个数据集上训练,测试集词错误率达8.7%。支持16kHz采样率语音输入,可通过HuggingSound库或自定义脚本使用。项目为葡萄牙语语音识别研究和应用提供了实用工具。
wav2vec2-large-xlsr-53-arabic - XLSR-53模型在阿拉伯语语音识别中的应用与性能
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型自动语音识别阿拉伯语
该项目基于Facebook的wav2vec2-large-xlsr-53模型,通过阿拉伯语语音数据微调,开发了一个高性能的阿拉伯语语音识别模型。在Common Voice测试集上,模型实现了39.59%的词错误率和18.18%的字符错误率,表现优于同类模型。模型支持16kHz采样率的语音输入,可直接用于阿拉伯语语音转录,无需额外语言模型。项目详细介绍了使用方法和评估结果,为阿拉伯语语音识别研究提供了有价值的参考。
wav2vec2-large-xlsr-53 - 突破性多语言语音识别模型 适用低资源语言场景
GithubHuggingfaceWav2Vec2-XLSR-53多语言模型开源项目模型深度学习语音识别预训练模型
Wav2Vec2-XLSR-53是一款基于wav2vec 2.0架构的多语言语音识别模型。该模型通过在53种语言的原始音频上预训练,学习跨语言语音表示。在CommonVoice和BABEL等基准测试中,Wav2Vec2-XLSR-53显著优于单语言模型,特别适合低资源语言的语音识别任务。这一开源项目为研究人员提供了强大工具,有助于推动低资源语言语音理解的进展。
wav2vec2-large-xlsr-53-english - XLSR-53微调的英语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型自然语言处理语音识别
该模型基于wav2vec2-large-xlsr-53在Common Voice 6.1英语数据集上微调而来。在Common Voice英语测试集上,模型达到19.06%词错率和7.69%字符错误率。支持16kHz采样率语音输入,可单独使用或结合语言模型。提供HuggingSound库和自定义脚本的Python示例代码,方便用户进行语音识别。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号