Project Icon

wav2vec2-large-xlsr-53-spanish

Wav2Vec2模型在西班牙语语音识别中的表现

项目在Common Voice ES测试集上测试了Wav2Vec2模型的性能,语音识别错误率为17.6%。此项目使用Facebook发布的模型,与Torchaudio结合进行数据预处理,实现了语音到文本的转化,展示了语音处理与自动语音识别领域的最新进展。

wav2vec2-xls-r-300m-cs-250 - 高性能捷克语语音识别模型 实现精准音频转文本
GithubHuggingfaceWav2Vec2开源项目捷克语模型模型训练深度学习语音识别
这是一个基于wav2vec2-xls-r-300m的捷克语语音识别模型,经过Common Voice 8.0等多个数据集的微调。模型在测试集上达到7.3%的词错误率和2.1%的字符错误率,性能优异。它支持16kHz采样率的语音输入,无需额外语言模型即可直接使用。项目提供了简洁的使用示例,并详细记录了训练过程和评估指标。
wav2vec2-large-xlsr-53-polish - 基于XLSR-53的波兰语语音识别模型
Common VoiceGithubHuggingfaceXLSR Wav2Vec2开源项目模型波兰语自然语言处理语音识别
此模型基于wav2vec2-large-xlsr-53,在波兰语Common Voice数据集上进行微调。在测试集上达到14.21%词错率和3.49%字错率。模型支持16kHz采样率的波兰语语音输入,可用于自动语音识别任务。用户可使用HuggingSound库或自定义脚本轻松实现推理。
wav2vec2-xls-r-1b - 大规模多语言语音预训练模型支持128种语言处理
GithubHuggingfaceXLS-R多语言模型开源项目模型语音处理语音识别预训练
Wav2Vec2-XLS-R-1B是Facebook AI开发的大规模多语言语音预训练模型,拥有10亿参数。该模型在436K小时的公开语音数据上训练,涵盖128种语言。在CoVoST-2语音翻译基准测试中平均提升7.4 BLEU分,BABEL等语音识别任务错误率降低20%-33%。适用于语音识别、翻译和分类等任务,需要16kHz采样率的语音输入进行微调。
wav2vec2-large-lv60 - 深度学习实现高性能语音识别 仅需少量标记数据
GithubHuggingfaceWav2Vec2开源项目模型深度学习语音识别语音预训练音频处理
Wav2Vec2是Facebook开发的语音预训练模型,通过无监督学习从原始音频中提取语音特征。该模型在大规模未标注数据上预训练后,能够以极少量的标注数据实现高性能语音识别。在LibriSpeech测试集上,全量标注数据训练可达1.8/3.3词错率;仅用1小时标注数据即超过先前100小时数据的最佳结果;10分钟标注数据也能实现4.8/8.2词错率。Wav2Vec2为低资源环境下的高质量语音识别提供了新的可能性。
wav2vec2-base-finetuned-sentiment-classification-MESD - 基于Wav2Vec2的西班牙语音情感分析模型 准确率达93%
GithubHuggingfacewav2vec2开源项目情感分析机器学习模型西班牙语语音识别
该模型是在MESD数据集上对wav2vec2-base进行微调的西班牙语音情感分析工具。经过约890条专业录音训练,模型在语音情感识别方面达到93.08%的分类准确率。适用于情感推荐系统、智能环境控制和安全监控等领域。模型在专业录音环境下表现优异,但在嘈杂背景和识别恐惧情绪时存在一定局限性。
wav2vec2-large-xlsr-53-german - 优化德语自动语音识别的开源模型
Common VoiceGithubHuggingfaceWav2Vec2开源项目德语模型深度学习语音识别
本项目利用wav2vec2-large-xlsr-53-german模型对德语Common Voice数据集进行自动语音识别,得到WER为18.5%的结果。项目采用Torchaudio和Transformers库,并使用Resample进行音频预处理。该模型在语音转文字应用中具有广泛的研究价值。
wav2vec2-xls-r-300m-phoneme - 微调后的Facebook语音处理模型
GithubHuggingfacewav2vec2-xls-r-300m开源项目梯度累积模型模型训练训练超参数语音识别
该模型是在Facebook的wav2vec2-xls-r-300m基础上进行微调,专注于语音处理任务,损失函数为0.3327,字符错误率为0.1332。使用了先进的参数优化和混合精度训练技术,适用于多种语音识别和处理场景。
wav2vec2-large-xlsr-53-french - 法语语音识别模型实现自动语音文本转录
Common VoiceGithubHuggingfaceXLSR开源项目机器学习模型法语语音识别
该开源模型通过针对法语的深度训练,实现了法语语音到文本的自动转录功能。模型支持处理16kHz采样率的语音输入,在标准测试集上展现出较低的错误率。模型提供完整的使用示例和评估工具,可用于法语语音识别相关应用开发。
wav2vec2-large-xlsr-53-swedish - 基于Wav2Vec2的瑞典语语音识别模型 支持16kHz采样率
Common VoiceGithubHuggingfaceWav2Vec2开源项目模型模型训练瑞典语语音识别
这是一个基于Wav2Vec2-Large-XLSR-53在瑞典语数据集上微调的语音识别模型。模型在Common Voice瑞典语测试集上达到14.29% WER和4.93% CER的性能。它可直接使用,无需额外语言模型,适用于16kHz采样率音频。模型经过多阶段预训练和微调,为瑞典语自动语音识别任务提供了有效解决方案。
wav2vec2-large-xlsr-53-chinese-zh-cn - 中文自动语音识别模型提供广泛应用支持
Common VoiceGithubHuggingSoundHuggingfaceXLSR Wav2Vec2开源项目模型语音识别语音转录
该模型基于Common Voice、CSS10和ST-CMDS数据集,对facebook的wav2vec2-large-xlsr-53进行了微调,以实现中文自动语音识别。模型能够处理16kHz采样率的语音输入,可通过HuggingSound库直接进行语音转录或使用定制推理脚本。评估结果显示,模型在Common Voice测试数据集上WER为82.37%,CER为19.03%。感谢OVHcloud提供的GPU支持,该模型适用于医药、教育等领域语音数据处理。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号