Project Icon

wav2vec2-lv-60-espeak-cv-ft

利用微调的wav2vec2模型提升多语言语音和语素识别能力

wav2vec2-large-lv60模型经过多语言Common Voice数据集微调,实现跨语言语音与语素识别。模型在16kHz采样率的语音输入下输出语素标签,需使用语素到单词的映射字典进行转换。该方法在未见语言的转录中表现优异,超过以往单一语言模型的效果。

wav2vec2-xlsr-53-espeak-cv-ft - 基于Wav2Vec2的跨语言零样本音素识别模型
GithubHuggingfaceWav2Vec2多语言模型开源项目模型语音识别跨语言识别音素识别
此模型在wav2vec2-large-xlsr-53预训练基础上,利用多语言Common Voice数据集微调,实现了多语言音素识别。通过将训练语言音素映射至目标语言,该模型采用简单有效的跨语言零样本学习方法。相比先前研究,此方法显著提升了性能,为多语言语音识别领域提供了一个简洁而强大的解决方案。
wav2vec2-large-xlsr-53-esperanto - 基于XLSR-53微调的世界语语音识别模型
Common VoiceEsperantoGithubHuggingfaceWav2Vec2XLSR开源项目模型语音识别
该项目基于wav2vec2-large-xlsr-53模型,使用世界语Common Voice数据集进行微调,开发了一个世界语语音识别模型。模型在测试集上实现12.31%的词错误率(WER),支持16kHz采样率的语音输入。它可直接应用于语音识别任务,无需额外语言模型。项目详细介绍了模型的使用方法和评估过程。
wav2vec2-large-lv60 - 深度学习实现高性能语音识别 仅需少量标记数据
GithubHuggingfaceWav2Vec2开源项目模型深度学习语音识别语音预训练音频处理
Wav2Vec2是Facebook开发的语音预训练模型,通过无监督学习从原始音频中提取语音特征。该模型在大规模未标注数据上预训练后,能够以极少量的标注数据实现高性能语音识别。在LibriSpeech测试集上,全量标注数据训练可达1.8/3.3词错率;仅用1小时标注数据即超过先前100小时数据的最佳结果;10分钟标注数据也能实现4.8/8.2词错率。Wav2Vec2为低资源环境下的高质量语音识别提供了新的可能性。
wav2vec2-large-xlsr-53 - 突破性多语言语音识别模型 适用低资源语言场景
GithubHuggingfaceWav2Vec2-XLSR-53多语言模型开源项目模型深度学习语音识别预训练模型
Wav2Vec2-XLSR-53是一款基于wav2vec 2.0架构的多语言语音识别模型。该模型通过在53种语言的原始音频上预训练,学习跨语言语音表示。在CommonVoice和BABEL等基准测试中,Wav2Vec2-XLSR-53显著优于单语言模型,特别适合低资源语言的语音识别任务。这一开源项目为研究人员提供了强大工具,有助于推动低资源语言语音理解的进展。
wav2vec2-large-960h-lv60-self - Wav2Vec2大规模语音识别模型实现低词错误率
GithubHuggingfaceLibriSpeechWav2Vec2开源项目模型模型评估自训练语音识别
Wav2Vec2-large-960h-lv60-self是一个基于Wav2Vec2技术的大规模语音识别模型。该模型在960小时的Libri-Light和Librispeech数据集上进行预训练和微调,采用自训练方法。在LibriSpeech清晰测试集上,模型实现1.9%的词错误率,其他测试集上为3.9%。模型可直接用于音频转录,特别适合标记数据有限的语音识别任务。
wav2vec2-xls-r-300m-cs-250 - 高性能捷克语语音识别模型 实现精准音频转文本
GithubHuggingfaceWav2Vec2开源项目捷克语模型模型训练深度学习语音识别
这是一个基于wav2vec2-xls-r-300m的捷克语语音识别模型,经过Common Voice 8.0等多个数据集的微调。模型在测试集上达到7.3%的词错误率和2.1%的字符错误率,性能优异。它支持16kHz采样率的语音输入,无需额外语言模型即可直接使用。项目提供了简洁的使用示例,并详细记录了训练过程和评估指标。
wav2vec2-large-xlsr-53-english - XLSR-53微调的英语语音识别模型
Common VoiceGithubHuggingfaceWav2Vec2XLSR-53开源项目模型自然语言处理语音识别
该模型基于wav2vec2-large-xlsr-53在Common Voice 6.1英语数据集上微调而来。在Common Voice英语测试集上,模型达到19.06%词错率和7.69%字符错误率。支持16kHz采样率语音输入,可单独使用或结合语言模型。提供HuggingSound库和自定义脚本的Python示例代码,方便用户进行语音识别。
wav2vec2-large-robust-ft-libri-960h - 多领域预训练的大规模语音识别模型
GithubHuggingfaceLibrispeechWav2Vec2开源项目机器学习模型自监督学习语音识别
wav2vec2-large-robust-ft-libri-960h是一个基于Wav2Vec2架构的大规模语音识别模型。该模型在多个领域的音频数据集上进行了预训练,包括Libri-Light、CommonVoice、Switchboard和Fisher,涵盖了有声读物、众包语音和电话交谈等多种音频类型。随后,模型在960小时的Librispeech数据集上进行了微调。这种多领域预训练和目标域微调的方法显著提高了模型在跨领域语音识别任务中的性能。模型支持16kHz采样率的语音输入,适用于需要处理多样化音频数据的应用场景。
wav2vec2-large-960h - 大规模预训练语音识别模型实现低资源高性能
GithubHuggingfaceLibrispeechWav2Vec2开源项目模型深度学习自然语言处理语音识别
Wav2Vec2-Large-960h是Facebook开发的预训练语音识别模型,在960小时LibriSpeech数据上微调。采用自监督学习从原始音频学习表示,在低资源场景下表现优异。LibriSpeech测试集上词错误率为1.8/3.3。模型可用于语音转写,提供了详细使用示例。
wav2vec2-btb-cv-ft-btb-cy - 基于微调的语音识别模型,提升准确度与适用性
GithubHuggingfacewav2vec2开源项目损失率模型模型优化自动语音识别训练参数
此AI模型基于DewiBrynJones的wav2vec2-xlsr-53-ft-btb-cv-cy微调而成,专注提升自动语音识别精确度。评估词错误率为0.3402,表现出明显改善。使用Adam优化器,学习率为0.0003,训练批次为4。适用于高精度需求的语音识别场景,但因缺乏训练数据和用途的细节说明,适用性需谨慎评估。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号