Project Icon

wav2vec2-lv-60-espeak-cv-ft

利用微调的wav2vec2模型提升多语言语音和语素识别能力

wav2vec2-large-lv60模型经过多语言Common Voice数据集微调,实现跨语言语音与语素识别。模型在16kHz采样率的语音输入下输出语素标签,需使用语素到单词的映射字典进行转换。该方法在未见语言的转录中表现优异,超过以往单一语言模型的效果。

wav2vec2-large-xlsr-53-chinese-zh-cn - 中文自动语音识别模型提供广泛应用支持
Common VoiceGithubHuggingSoundHuggingfaceXLSR Wav2Vec2开源项目模型语音识别语音转录
该模型基于Common Voice、CSS10和ST-CMDS数据集,对facebook的wav2vec2-large-xlsr-53进行了微调,以实现中文自动语音识别。模型能够处理16kHz采样率的语音输入,可通过HuggingSound库直接进行语音转录或使用定制推理脚本。评估结果显示,模型在Common Voice测试数据集上WER为82.37%,CER为19.03%。感谢OVHcloud提供的GPU支持,该模型适用于医药、教育等领域语音数据处理。
wav2vec2-xls-r-300m-phoneme - 微调后的Facebook语音处理模型
GithubHuggingfacewav2vec2-xls-r-300m开源项目梯度累积模型模型训练训练超参数语音识别
该模型是在Facebook的wav2vec2-xls-r-300m基础上进行微调,专注于语音处理任务,损失函数为0.3327,字符错误率为0.1332。使用了先进的参数优化和混合精度训练技术,适用于多种语音识别和处理场景。
wav2vec2-base - Facebook开发的语音表征学习模型实现低资源语音识别
GithubHuggingfaceWav2Vec2开源项目模型深度学习自监督学习语音识别语音预训练
Wav2Vec2-Base是Facebook开发的语音预训练模型,基于16kHz采样语音音频。该模型通过掩蔽输入语音的潜在空间和解决对比学习任务,学习语音表征。在LibriSpeech基准测试中,即使只使用少量标注数据,也能取得优异成绩,证明了低资源语音识别的可行性。研究人员可以利用此模型进行微调,应用于不同的语音识别任务。
wav2vec2-large-xlsr-53-spanish - Wav2Vec2模型在西班牙语语音识别中的表现
Common VoiceGithubHuggingfaceWav2Vec2开源项目模型自动语音识别西班牙语音频
项目在Common Voice ES测试集上测试了Wav2Vec2模型的性能,语音识别错误率为17.6%。此项目使用Facebook发布的模型,与Torchaudio结合进行数据预处理,实现了语音到文本的转化,展示了语音处理与自动语音识别领域的最新进展。
wav2vec2-xls-r-300m-mixed - wav2vec2模型在多语言环境下的创新语音识别解决方案
GithubHuggingfaceKeraswav2vec2-xls-r-300m-mixed开源项目模型评估数据集语言模型语音识别
wav2vec2-xls-r-300m-mixed项目在马来语、Singlish和普通话三种语言上进行了微调。依托单GPU(RTX 3090 Ti)完成训练,结合语言模型在CER和WER等指标上表现优异,尤其在普通话识别中取得了最低WER 0.075。这为多语言语音识别的研究与优化提供了一个有效路径。
wav2vec2-xls-r-1b - 大规模多语言语音预训练模型支持128种语言处理
GithubHuggingfaceXLS-R多语言模型开源项目模型语音处理语音识别预训练
Wav2Vec2-XLS-R-1B是Facebook AI开发的大规模多语言语音预训练模型,拥有10亿参数。该模型在436K小时的公开语音数据上训练,涵盖128种语言。在CoVoST-2语音翻译基准测试中平均提升7.4 BLEU分,BABEL等语音识别任务错误率降低20%-33%。适用于语音识别、翻译和分类等任务,需要16kHz采样率的语音输入进行微调。
wav2vec2-xls-r-300m - Facebook开发的大规模多语言预训练语音模型
GithubHuggingfaceXLS-Rwav2vec 2.0多语言模型开源项目模型语音识别预训练模型
wav2vec2-xls-r-300m是Facebook AI研发的大规模多语言预训练语音模型。该模型在436,000小时的未标记语音数据上预训练,涵盖128种语言,采用wav2vec 2.0目标函数,拥有3亿参数。它可应用于自动语音识别、翻译和分类等任务,在CoVoST-2语音翻译基准测试中显著提升了性能。
wav2vec2-xls-r-300m-timit-phoneme - 改进Wav2Vec2的音素识别性能的开源AI模型
DARPA TIMITGithubHuggingFaceHuggingfacewav2vec2-xls-r-300m开源项目模型自动语音识别语音识别
该项目在DARPA TIMIT数据集上微调了Wav2Vec2模型,提升音素识别的精确度,展示从音频到文本的自动识别过程。使用HuggingFace的pipeline,实现了端到端处理。测试集上的字符错误率为7.996%。项目特色包括自定义音素预测方法和现代AI工具优化,有助于提高语音处理技术效率。
wav2vec2-base-960h - Facebook开发的高效语音识别模型
GithubHuggingfaceLibriSpeechWav2Vec2开源项目模型深度学习自然语言处理语音识别
wav2vec2-base-960h是Facebook开发的语音识别模型,基于960小时LibriSpeech数据集训练。在LibriSpeech clean/other测试集上,词错误率分别为3.4%和8.6%。模型可从原始音频学习表征,仅需1小时标记数据即可超越现有方法,展示了低资源语音识别的潜力。
wav2vec2-large-es-voxpopuli - Wav2Vec2大型西班牙语语音识别模型基于VoxPopuli预训练
GithubHuggingfaceVoxPopuliWav2Vec2开源项目模型自动语音识别语音语料库预训练模型
Wav2Vec2-Large-VoxPopuli是一个基于Facebook Wav2Vec2技术的西班牙语语音识别模型。该模型利用VoxPopuli语料库中的无标签西班牙语音频数据进行预训练,能够有效学习语音结构。模型适用于自动语音识别任务,可通过微调提升特定领域性能。采用CC-BY-NC-4.0许可证,为语音处理研究和开发提供了有力工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号