Project Icon

moco

基于动量对比的无监督视觉表示学习

MoCo是一种创新的无监督视觉表示学习方法,利用动量对比在大规模未标注数据上进行预训练。该方法在ImageNet数据集上训练ResNet-50模型,无需标注即可学习出高质量的视觉特征。MoCo v2版本在原基础上进一步优化,线性分类准确率达67.5%。项目开源了PyTorch实现,支持分布式训练,并提供预训练权重。

moondream - 小巧高效的视觉语言模型 兼容多平台运行
AI问答Githubmoondream图像识别开源项目深度学习视觉语言模型
moondream是一款小型视觉语言模型,可在多种平台上运行。该模型在VQAv2、GQA和TextVQA等基准测试中表现优异,能够回答图像相关问题并提供详细描述。moondream支持批量处理,可通过transformers库或GitHub仓库使用。尽管体积小巧,该模型在图像理解和问答任务上表现出色。
nomic-embed-vision-v1.5 - 高性能视觉嵌入模型实现多模态共享空间
GithubHuggingfacenomic-embed-vision-v1.5图像处理多模态嵌入模型开源项目模型模型训练
nomic-embed-vision-v1.5是一款视觉嵌入模型,与nomic-embed-text-v1.5共享嵌入空间。该模型在ImageNet零样本和Datacomp基准测试中表现出色,优于OpenAI CLIP和Jina CLIP。它支持多模态检索,适用于文本到图像的检索场景。开发者可通过Nomic嵌入API或Transformers库使用该模型生成嵌入。nomic-embed-vision-v1.5为多模态检索增强生成(RAG)应用提供了有力支持。
moment - 时间序列分析基础模型 多任务多领域应用
GithubMOMENT基础模型多任务开源项目时间序列预训练
MOMENT是一个开源的时间序列分析基础模型家族,为多任务、多数据集和多领域应用而设计。该模型在大规模时间序列数据上预训练,可处理预测、分类、异常检测和插补等任务。MOMENT能捕捉时间序列的内在特征,学习有意义的数据表示,在少量标记数据的情况下也表现出色。项目提供预训练模型、教程和研究代码,为时间序列分析提供了实用工具。
CLIP-ViT-B-32-256x256-DataComp-s34B-b86K - 基于DataComp训练的CLIP多模态视觉语言模型
CLIPDataComp-1BGithubHuggingfaceViT-B-32图像分类开源项目机器学习模型
CLIP ViT-B/32是一个在DataComp-1B数据集上训练的视觉语言模型,通过OpenCLIP框架实现。模型在ImageNet-1k分类任务中实现72.7%零样本准确率,支持图像分类、跨模态检索等研究任务。该开源项目为计算机视觉研究提供了重要的实验基础
BCL - 利用记忆效应的对比学习算法提升长尾数据表示
BCLGithub对比学习开源项目自监督学习记忆效应长尾识别
BCL项目开发了一种创新的自监督学习方法,利用神经网络的记忆效应来增强对比学习中样本视图的信息差异。这种方法从数据角度出发,无需标签就能有效提升长尾分布数据的表示学习能力。在多个基准数据集上的实验表明,BCL的性能超过了现有的最先进方法,为处理现实世界中的长尾分布数据提供了新的自监督学习思路。
git-large-coco - 高级视觉与语言转换:大规模图像到文本模型
GITGithubHuggingface图像标注开源项目模型模型训练视觉视觉问答
GIT大型模型通过在COCO数据集上微调,实现图像到文本的转换,支持图像和视频字幕生成、视觉问答和图像分类等功能。该模型利用图像和文本令牌的结合,预测下一个文本令牌,并在多种视觉与语言应用场景中表现出色。
dinov2-small-imagenet1k-1-layer - 视觉特征学习的Transformer模型
DINOv2GithubHuggingfaceVision Transformer图像分类开源项目模型特征提取自监督学习
DINOv2方法无监督预训练的Vision Transformer,适用于影像特征学习增强场景。此小尺寸模型能在ImageNet-1k数据集上执行分类任务,通过提取特征来辅助下游任务。尽管模型未包含微调头,但可附加线性层进行标准分类,适合高精度视觉特征需求的应用。
continual-learning - PyTorch 在三种不同场景中实现各种持续学习方法
Continual LearningGithubNeurIPSPyTorchSynaptic Intelligenceincremental learning开源项目
此项目实现了在增量学习场景中的PyTorch深度神经网络实验,支持学术设置下的分类问题,且可进行更加灵活的无任务增量学习实验。项目提供了演示脚本和详细的安装指导,适合多种经典方法的性能对比和自定义实验。
MotionBERT - 多任务人体运动表征学习框架
GithubMotionBERT人体动作表示姿态估计开源项目深度学习计算机视觉
MotionBERT是一个多任务人体运动表征学习框架,整合了3D人体姿态估计、基于骨骼的动作识别和人体网格恢复等任务。该项目提供预训练模型和下游任务实现,支持自定义视频推理和生成以人为中心的视频表征。MotionBERT在多个基准测试中展现出优异性能,为人体运动分析研究提供了一个统一且高效的解决方案。
mmf - 多模态视觉与语言研究平台
Facebook AI研究GithubMMFPyTorch多模态研究开源项目热门视觉与语言
MMF是Facebook AI Research开发的用于视觉与语言多模态研究的模块化框架,支持PyTorch,提供分布式训练功能。该框架包括最新的视觉和语言模型实现,并已支持多项Facebook AI研究项目。MMF也是各类视觉和语言数据集挑战赛(如Hateful Memes、TextVQA、TextCaps和VQA挑战赛)的首选代码基础。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号