Project Icon

DoppelGANger

高保真时间序列数据生成框架

DoppelGANger是一个基于生成对抗网络(GAN)的时间序列数据生成框架。它通过解决长期依赖性和复杂多维关系等挑战,在多个真实数据集上实现了比基准模型高43%的保真度。该框架为网络系统研究提供了一种共享高质量合成数据集的通用方法,有助于推动数据共享实践。DoppelGANger已获得多家公司采用,并提供开源代码实现。

JGAN - Jittor框架上27种GAN模型的实现与加速对比
GANGithubJittorPyTorch人工智能开源项目深度学习
JGAN项目在Jittor深度学习框架上实现了27种经典生成对抗网络(GAN)模型,包括ACGAN、CycleGAN和DCGAN等。相比PyTorch,这些模型平均加速185%,最高达283%。项目提供详细使用说明和性能对比数据,为GAN研究和应用开发提供全面的模型库支持。
gigagan-pytorch - 最新生成对抗网络GigaGAN的实现,优化训练收敛和模型稳定性
AdobeGigaGANGithubLAIONPyTorchStabilityAI开源项目
gigagan-pytorch项目实现了Adobe最新的生成对抗网络GigaGAN,优化了跳层激励和辅助重建损失,以提升训练收敛速度和模型稳定性。项目支持高分辨率上采样器,具备混合精度和多GPU训练功能。适合寻求高效稳定GAN训练的开发者和研究人员。可加入Discord社区,与LAION合作获取更多支持。
CycleGAN - 可以从绘画生成照片、将马变成斑马、进行风格转换等的软件。
CycleGANGithubPyTorch图像转换对抗网络开源项目热门预训练模型
CycleGAN 利用循环一致性对抗网络,实现了无需成对输入输出数据的图像到图像的转换。这一技术广泛应用于风格转换、季节变换及更多复杂场景,支持PyTorch实现,并提供丰富的预训练模型。无论是艺术画作到现实照片的转换,还是不同季节间的景观变化,CycleGAN 都能提供令人印象深刻的视觉效果。
Keras-GAN - 多种生成对抗网络(GAN)的Keras实现与教程
GithubKeras-GAN图像生成开源项目机器学习深度学习生成对抗网络
该项目包含多种Keras实现的生成对抗网络(GAN),如AC-GAN、CycleGAN、Pix2Pix等,基于研究论文,提供核心概念的实现与详细教程。欢迎社区贡献以扩展更多GAN变体。
joliGEN - 集成GAN、扩散和一致性模型的AI图像生成框架
GANGithubJoliGEN图像处理开源项目扩散模型生成式AI
joliGEN是一个集成框架,用于训练自定义的AI图像转换模型。该框架集成了GAN、扩散和一致性模型,可用于配对和无配对的图像转换任务。joliGEN适用于图像生成控制、增强现实和数据集增强等实际场景。它支持快速稳定的训练过程,并提供REST API服务简化部署。凭借丰富的选项和参数,joliGEN可应用于多种图像生成和处理任务。
CVPR2022-DaGAN - 基于深度感知的说话头像视频生成技术
DaGANGithub人工智能对抗生成网络开源项目深度感知视频生成
DaGAN是一种新型深度感知生成对抗网络,旨在生成高质量的说话头像视频。该方法利用面部深度信息提升生成效果,可适用于卡通和真人头像。在VoxCeleb1数据集上,DaGAN展现出优异性能。项目开源了预训练模型、在线演示和训练代码,便于研究复现。作为CVPR 2022的成果,DaGAN代表了说话头像生成领域的重要进展。
gretel-synthetics - 提供多模型支持的开源合成数据生成库
GithubGretel SyntheticsPyTorchTensorFlow合成数据开源项目生成模型
Gretel.ai 提供的 Gretel Synthetics 是一个开源合成数据生成库,支持生成高质量的合成数据,适用于机器学习和数据分析。该库主要支持 LSTM、Timeseries DGAN 和 ACTGAN 模型,并与 TensorFlow、PyTorch 和 SDV 集成。用户可以通过简易的 Python 代码进行安装和使用。文档详细介绍了使用方法,包括配置、模型训练和数据生成,并提供多个示例和教程,帮助用户快速上手。
GAN-MNIST - TensorFlow实现的GAN模型生成MNIST手写数字图像
GANGithubMNISTTensorFlow图像生成开源项目深度学习
此项目展示了使用TensorFlow实现生成对抗网络(GAN)处理MNIST手写数字数据集。项目包含模型定义、训练脚本和图像处理工具,支持MNIST和CelebA人脸数据集。通过生成样本的可视化结果,展示了GAN生成逼真手写数字图像的能力。项目代码复现了Theano版本的实现,为开发者提供了学习和实践GAN技术的参考资源。
PSGAN - 姿势和表情鲁棒的空间感知妆容迁移技术
GithubPSGAN人脸识别妆容迁移开源项目深度学习计算机视觉
PSGAN是一种新型的妆容迁移技术,能够在不同姿势和表情下实现精确的妆容转移。该技术利用空间感知GAN架构,支持高度定制化的妆容效果,并能保留细节。PSGAN不仅适用于静态图像,还可应用于视频中的实时妆容迁移,为计算机视觉和美妆行业带来新的研究方向。项目还增加了使用拉普拉斯变换的高分辨率人脸支持功能,进一步提升了技术的应用范围和效果。PSGAN的开源代码支持GPU推理和训练,为研究者和开发者提供了便利的实验环境。
anycost-gan - 高效灵活的GAN模型实现实时图像生成与编辑
Anycost GANGithubStyleGAN2交互式编辑图像合成开源项目计算成本
Anycost GAN是一种新型生成对抗网络,可在不同计算资源下生成一致的高质量图像。该模型支持多分辨率和自适应通道训练,实现实时图像编辑。项目提供预训练模型、演示和评估代码,方便研究人员和开发者探索高效GAN技术。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号