Project Icon

functime

高性能时间序列机器学习Python库

functime是一个面向大规模时间序列数据分析的Python库,提供高效的全局预测和特征提取功能。它支持时间序列预处理、交叉验证和性能评估,通过惰性Polars变换实现优化。该库能快速处理海量时间序列,支持外生特征和自动化调优,并集成LLM代理用于预测分析,适用于各种机器学习和数据分析任务。

neuralforecast - 先进的神经网络时间序列预测模型库
GithubNeuralForecast开源项目时间序列机器学习深度学习预测模型
NeuralForecast 提供 30 多种先进的神经网络模型,提升时间序列预测的准确性和效率。支持外生变量和静态协变量,并具备自动超参数优化和可解释性方法。通过 sklearn 语法 `.fit` 和 `.predict` 实现快速训练和预测,包含 NBEATSx 和 NHITS 等最新实现,并与 Ray 和 Optuna 集成,适用于多种应用场景。
timetk - R语言时间序列分析与可视化工具包
GithubR语言timetk开源项目数据可视化时间序列分析机器学习
timetk是一个功能丰富的R语言时间序列分析工具包。它提供数据可视化、处理和特征工程功能,支持交互式和静态绘图、时间序列机器学习、异常检测和聚类分析。与同类包相比,timetk功能更全面、易用性更高,可简化时间序列分析和预测建模流程。该包适用于需要高效处理和分析时间序列数据的研究人员和数据科学家。
mcfly - 简化时间序列深度学习的开源框架
GithubTensorflowmcfly回归分析开源项目时间序列分类深度学习
mcfly是一个开源的深度学习框架,专门用于时间序列分类和回归。它能直接处理原始数据,无需计算信号特征或专业领域知识,在加速度计数据的活动分类等任务中表现出色。该框架基于TensorFlow 2构建,支持Python 3.10和3.11,并提供可视化工具展示模型配置和性能。mcfly与传统机器学习技术相比具有竞争力,欢迎社区贡献。
flow-forecast - 开源时间序列深度学习框架,支持最新模型和云端集成
Flow ForecastGithubtransformer开源开源项目时间序列预测深度学习
Flow Forecast 是一个开源时间序列预测深度学习框架,提供最新的Transformer、注意力模型、GRU等技术,并具有易于理解的解释指标、云集成和模型服务功能。该框架是首个支持Transformer模型的时间序列框架,适用于流量预测、分类和异常检测。
darts - Python中易于使用的时间序列预测与异常检测库
DartsGithub开源项目异常检测时间序列概率预测深度学习
Darts是一个用户友好且灵活的Python库,专注于时间序列的预测与异常检测。它提供了一系列从ARIMA到深度神经网络的多样化模型,通过统一的fit()和predict()接口简化操作,类似于scikit-learn。此外,Darts支持包括多变量和外部数据在内的复杂时间序列处理,并为大规模数据集提供高效解决方案。它还拥有全面的异常检测功能,允许进行深入的异常分析和评分。
Finance-Python - Python金融计算库 支持量化交易与分析
GithubPython开源项目指标库资产组合优化量化交易金融计算
Finance-Python是一个开源的金融计算库,使用纯Python实现。它为量化交易提供了多种工具,包括定价分析、技术指标和复合运算指标库。该项目支持与pandas集成,并具备金融日期计算、资产组合优化和产品定价模型等功能,适用于金融分析和量化交易研究。
awesome-time-series - 时间序列预测与分析的全面资源汇总
GithubTransformer图神经网络开源项目异常检测时间序列预测深度学习
本项目汇集了时间序列预测领域的最新论文、代码和相关资源。内容涵盖M4竞赛、Kaggle时间序列竞赛、学术研究、理论基础、实践工具和数据集等。为研究人员和从业者提供全面的参考资料,促进时间序列预测技术的深入研究与应用。
nolitsa - 全面的Python非线性时间序列分析库
GithubLyapunov指数NoLiTSAPython模块嵌入维度估计开源项目非线性时间序列分析
NoLiTSA是一个开源Python模块,专门用于非线性时间序列分析。它实现了多种标准算法,如嵌入延迟估计、维度估计、相关维数计算和最大Lyapunov指数估计。模块支持FT、AAFT和IAAFT替代数据生成,并提供噪声减少功能。NoLiTSA适用于复杂的时间序列分析任务,已在天体物理学和流体动力学研究中应用,为科研人员提供了可靠的分析工具。
catch22 - 精选时间序列特征提取库
Githubcatch22开源项目数据挖掘时间序列特征机器学习特征提取
catch22是一个包含22个时间序列特征的开源库,由C语言编写,支持Python、R、Matlab和Julia等多种编程语言。这些特征是从7000多个候选中精选而来,在93个实际时间序列分类问题中表现优异。catch22提供了跨平台的安装方法和使用接口,包括各语言的原生版本和C编译版本。该工具主要用于高效提取时间序列的动态特征,适用于多种研究和应用场景。
finnts - 微软开发的时间序列预测框架
Azure集成Github开源项目时间序列预测自动化建模财务预测
finnts是微软开发的时间序列预测框架,提供自动化特征工程、选择、回测和模型选择功能。支持25种以上单变量和多变量模型,可处理多种时间尺度的预测。框架支持外部回归变量,能与Azure集成实现云端并行处理。虽源于金融领域,但适用于各类时间序列预测问题。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号