Project Icon

functime

高性能时间序列机器学习Python库

functime是一个面向大规模时间序列数据分析的Python库,提供高效的全局预测和特征提取功能。它支持时间序列预处理、交叉验证和性能评估,通过惰性Polars变换实现优化。该库能快速处理海量时间序列,支持外生特征和自动化调优,并集成LLM代理用于预测分析,适用于各种机器学习和数据分析任务。

tspiral - 优化时间序列预测的Python工具包
GithubPython包scikit-learntspiral开源项目时间序列预测机器学习
tspiral是一个专注于时间序列预测的Python工具包,提供多种优化技术如递归预测、直接预测、堆叠预测和修正预测。它与scikit-learn兼容,支持全局和多变量时间序列预测,并提供简洁API。tspiral将复杂的时间序列问题转化为表格式监督回归任务,方便用户利用scikit-learn生态系统进行预测分析。
granite-timeseries-ttm-r2 - IBM开源轻量级模型TTM引领时间序列预测新方向
GithubHuggingfaceTinyTimeMixers多变量预测开源项目时间序列预测模型零样本学习预训练模型
IBM Research开源的TinyTimeMixers (TTM)模型仅需1M参数,就能在多变量时间序列预测中超越数十亿参数的基准。TTM支持零样本预测,也可用少量数据微调达到竞争性能。适用于分钟至小时级别的点预测,轻量快速,单GPU或笔记本即可运行。TTM为时间序列预测带来新方向,尤其适合资源受限环境。
pendulum - Python日期时间处理的高级库
GithubPendulumPython开源项目日期时间时区转换时间处理
Pendulum是一个高级Python日期时间库,作为标准datetime模块的替代品,它提供了更直观的API和增强功能。该库支持时区管理、日期计算、人性化的时间表示,并能正确处理夏令时转换和日期规范化。Pendulum适用于复杂的时间操作场景,简化了Python开发者在处理日期时间相关任务时的工作。
scikit-fda - Python实现的功能数据分析库
GithubPythonscikit-fda函数数据分析开源项目数据科学统计学
scikit-fda是一个功能数据分析(FDA)的Python库,为处理依赖连续参数的数据提供全面工具。它支持数据表示、探索分析、预处理,以及功能数据的推断、分类、回归和聚类。兼容Python 3.8+版本,可通过PyPI或conda-forge安装。这个开源项目为数据科学家和研究人员提供了灵活的FDA工具集,简化了复杂数据的分析过程。
pyspi - 多变量时间序列成对交互统计分析Python库
GithubPython库pyspi多变量数据开源项目时间序列分析统计计算
pyspi是一个计算多变量时间序列数据成对交互统计的Python库。它包含数百种方法,涵盖从简单相关性到Granger因果关系等高级算法。该库适用于金融、神经影像等领域的时间序列分析。作为开源项目,pyspi致力于提供全面的时间序列分析工具,并鼓励社区参与开发。
PolyFuzz - 多功能模糊字符串匹配与评估框架
GithubPolyFuzz字符串匹配开源项目模糊匹配相似度计算自然语言处理
PolyFuzz是一个综合性Python库,整合了多种字符串匹配技术,包括编辑距离、TF-IDF、词嵌入和Transformer模型。该框架提供模糊字符串匹配、分组和评估功能,支持自定义模型和生产环境部署。PolyFuzz还具备可视化能力,通过精确率-召回率曲线展示不同模型的性能比较。其简洁API设计使得开发者能够轻松实现复杂的字符串处理任务。
luminaire - 开源时间序列异常检测库
GithubLuminaire开源库开源项目异常检测时间序列机器学习
Luminaire是一个开源的Python库,专门用于时间序列数据的异常检测和预测。它集成了数据预处理、建模和配置优化功能,可自动处理各类时间序列数据。该库支持批处理和流式数据监控,能识别相关性和季节性模式,并适应数据随时间的变化。Luminaire设计简单易用,仅需少量配置即可实现高效的异常检测。
pyoats - 灵活强大的时间序列异常检测Python库
GithubOATS开源项目异常检测时间序列机器学习
pyoats是一个专注于时间序列异常检测的开源Python库。它整合了多种先进检测算法,支持单变量和多变量时间序列分析,并提供统一的输出接口。该项目不仅集成了PyTorch、TensorFlow等深度学习框架,还包含传统统计方法。pyoats旨在简化异常检测实验流程,为数据科学家和工程师提供了一个功能丰富、使用灵活的工具。
UniTS - 统一时间序列模型实现多领域任务处理
GithubUniTS多任务学习开源项目时间序列模型迁移学习零样本学习
UniTS是一种统一的时间序列模型,可处理多领域的分类、预测、插补和异常检测任务。该模型使用共享参数方法,无需任务特定模块,在38个多领域数据集上表现优异。UniTS具有零样本、少样本和提示学习能力,能适应新的数据领域和任务。其创新的统一网络主干融合了序列和变量注意力机制以及动态线性运算符,为时间序列分析提供了灵活的解决方案。
chronos-t5-mini - 开源时间序列预测模型实现高效概率预测
Chronos-T5GithubHuggingface开源项目时间序列预测概率预测模型语言模型预训练模型
Chronos-T5-Mini是基于T5架构开发的时间序列预测模型,参数规模为2000万。模型通过将时间序列转换为token序列进行训练,采用多轨迹采样方式实现概率预测。模型在公开时间序列数据集和高斯过程生成的合成数据上完成预训练,采用4096大小的词汇表,相比原始T5模型显著降低了参数量同时保持了预测性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号