Project Icon

stories15M_MOE

TinyLLama多专家模型实现故事生成和Shakespeare风格文本

stories15M_MOE是一个实验性语言模型,由4个TinyLLama-15M专家模型组成,主要用于故事生成测试。模型包含一个经Shakespeare作品训练的LoRA适配器,可生成Shakespeare风格文本。尽管规模较小,但在特定领域文本生成方面展现了潜力,适合开发简单的故事讲述应用。当前阶段主要用于测试和研究,不推荐在生产环境中使用。

llama-30b-instruct-2048 - 语言处理模型,专为增强文本生成能力设计
AI绘图GithubHuggingfaceLLaMA伦理考量开源项目数据集模型高性能
Llama-30b-instruct-2048模型由Upstage研发,基于LLaMA架构,优化用于生成文本,支持动态扩展处理10k+输入符号。在多项基准数据集上表现出色,并结合DeepSpeed与HuggingFace工具进行微调。使用该模型需获得持有Meta授权表单的许可。
Llama-3.2-1B-Instruct-4bit - 精简高效的多语言文本生成工具
GithubHuggingfaceLlama 3.2Meta可接受使用政策开源项目机器学习模型许可协议
Llama-3.2-1B-Instruct-4bit是从Meta的Llama 3.2-1B-Instruct模型转换为MLX格式的产品,支持包括英语、德语、法语在内的多语言文本生成。引入4bit量化技术以提升运行效率与支持更大输入扩展。提供便捷的Python接口以实现文本生成,适合对话系统和内容创作等应用。遵循Meta的社区许可协议以确保合法使用。
NeuralLLaMa-3-8b-ORPO-v0.3 - 8B参数量文本生成模型在多任务中的优异表现
AI2推理挑战GithubHuggingfaceNeuralLLaMa-3-8b-ORPO-v0.3Open LLM排行榜准确率开源项目文本生成模型
NeuralLLaMa-3-8b-ORPO-v0.3是基于Meta Llama-3.1-8B-Instruct的一款文本生成模型,主要用于提升自然语言生成效率。此模型在AI2 Reasoning Challenge、HellaSwag、MMLU、TruthfulQA和Winogrande等数据集上表现良好,提供高达84.9%的正常化准确率。通过多数据集的支持与量化策略,NeuralLLaMa-3-8b-ORPO-v0.3在多种应用场景中展现出色的性能,适用于各类行业需求。
Moistral-11B-v3-GGUF - 提高文本生成智能性及多样性的AI模型
AI模型BeaverAIGithubHuggingface多样性小说格式开源项目模型科幻
Moistral 11B v3通过增强算法与更大数据集的精细调优,提升文本生成的智能性与多样性。版本更新增添多个类别如浪漫、家庭、科幻等的创作能力,从而实现更广泛的内容生成。Alpaca Instruct模式便于用户创作角色对话与叙述,优化于小说及故事写作,适用于多样化文本生成场景,提供自然流畅的创作体验。
model - 高效文本生成的突破:快速模型训练与推理
Apache许可证GithubHuggingfaceLLAMAUnsloth开源项目文本生成推理模型模型训练
该模型使用Unsloth和Huggingface的TRL库显著加速了训练过程,实现了高效文本生成。由keivenlombo开发,基于Apache-2.0许可,此模型为大规模语言模型的实施提供了一种便捷且准确的解决方案。
llama_3.1_q4 - 高效文本生成模型,结合优化技术提升性能
GithubHuggingfaceUnslothtransformers开源项目文本生成模型模型训练
llama_3.1_q4模型结合Unsloth与Huggingface TRL库,实现快速训练,保持8B参数模型的强大性能,优化文本生成能力。项目在Apache-2.0许可下开放使用,适用于多语言生成,由keetrap负责开发。
llama2.mojo - 将llama2模型移植到Mojo中,通过Mojo的SIMD和矢量化原语,将Python性能提升近250倍
GithubMojoPython性能提升TinyLlama-1.1B-Chat-v0.2llama2.mojo开源项目模型推理
llama2.mojo项目展示了如何将llama2模型移植到Mojo中,通过Mojo的SIMD和矢量化原语,将Python性能提升近250倍。在多线程推理中,Mojo版的性能超过了原始llama2.c的30%,在CPU上进行baby-llama推理时,性能超过了llama.cpp的20%。项目当前支持多个模型,包括stories和Tinyllama-1.1B-Chat。用户可以通过简单的命令行步骤或使用Docker在本地部署并运行该项目。
llama2_xs_460M_experimental - 了解LLaMA与LLaMa 2的小型实验版本及其精简模型参数
GithubHuggingfaceLLaMa 2MMLUTokenization大模型开源开源项目模型
项目呈现Meta AI的LLaMA与LLaMa 2开源重现版本,并采用缩小的模型参数:llama1_s为1.8B,llama2_xs为460M。训练基于RedPajama数据集,使用GPT2Tokenizer分词,支持通过HuggingFace Transformers库直接加载以及文本生成。模型在MMLU任务中表现评估,其中llama2_xs_460M在0-shot和5-shot中分别得21.13和26.39的分数。
Llama-3.1-WhiteRabbitNeo-2-8B-GGUF - Llama-3.1量化模型实现优化文本生成
GithubHuggingfaceLlama-3.1-WhiteRabbitNeo-2-8BRAM开源项目数据集文本生成模型量化
Llama-3.1-WhiteRabbitNeo-2-8B使用llama.cpp进行量化,以优化文本生成功能。项目提供多种量化方案,如Q6_K_L和Q5_K_L,适应不同内存条件,特别推荐Q6_K_L用于嵌入及输出权重以获取优异表现。用户可以使用huggingface-cli快捷下载所需文件,并通过Q4_0_X_X对ARM芯片进行性能优化。此项目提供详细决策指南,帮助选择合适的量化版本。
L3-8B-Stheno-v3.2-GGUF-IQ-Imatrix - 基于Llama 3的低资源角色扮演大语言模型
GithubHuggingfaceSillyTavernStheno大语言模型开源项目模型角色扮演量化模型
L3-8B-Stheno-v3.2-GGUF-IQ-Imatrix是一个经过优化量化的Llama 3大语言模型。该模型针对角色扮演场景进行了特别优化,支持故事创作和多轮对话。通过多种量化版本实现了低资源运行,8GB显存即可部署使用。模型在保持创造力的同时,具备出色的对话连贯性和指令遵循能力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号