Project Icon

gs-quant

量化金融Python工具包,优化交易策略与风险管理

GS Quant是一款开源的Python工具包,专为量化金融设计,由高盛量化开发团队创建和维护。基于强大的风险转移平台,GS Quant致力于加速量化交易策略和风险管理解决方案的开发。这一灵活易用的工具包适用于衍生品结构化、交易和风险管理,同时可作为数据分析应用的统计包。GS Quant为量化分析提供强大的API访问能力,支持Python 3.6及以上版本,为机构客户和量化研究人员提供全面的量化金融解决方案。

FinGPT - 开源金融大模型FinGPT,快速适应市场变化
FinGPTGithub开源项目情感分析指令调优数据集金融大语言模型
FinGPT项目提供开源金融大语言模型,重点解决金融行业的高训练成本和频繁更新需求。利用RLHF技术,实现了金融数据的快速更新和轻量级适配,并降低微调费用。FinGPT-Forecaster和多任务情感分析模型的性能超过GPT-4,展现出在金融预测和情感分析方面的强大能力。开源平台和丰富的数据集使开发者能够轻松再现和应用这些先进模型。
yahooquery - 快速获取雅虎财经数据的Python库
GithubPythonYahoo Finance APIyahooquery开源项目数据分析金融数据
yahooquery是一个非官方雅虎财经API的Python封装库,能快速检索多个股票代码的数据,并以Pandas数据框呈现。它支持异步请求,通过API端点获取数据,提高了效率和可靠性。此外,yahooquery还为雅虎财经高级用户提供额外功能。
Qwen2.5-Math-72B-Instruct-GGUF - Llamacpp在Qwen2.5-Math代码量化中的应用
ARM芯片GithubHugging FaceHuggingfaceQwen2.5-Math-72B-Instruct开源项目性能模型量化
项目应用llama.cpp对Qwen2.5-Math模型进行量化,提供多种量化格式以适应不同硬件配置。更新包括改进的分词器,涵盖高至极低质量的量化文件,适用于不同RAM和VRAM需求,并支持在ARM芯片上运行。使用K-quant和I-quant等量化方法,有助于优化模型性能与速度。下载和安装可通过huggingface-cli实现,灵活快捷。
guanaco-65B-GGUF - 解析新型GGUF格式及其多平台兼容性
GPU加速GithubGuanaco 65BHuggingfaceTim Dettmers开源项目模型模型格式量化
此项目涵盖了2023年8月21日由llama.cpp团队推出的GGUF格式,作为已停用的GGML格式的替代方案。该项目提供了多种比特的量化文件,适用于CPU和GPU的推理需求。用户能够通过多种客户端和库,如llama.cpp和text-generation-webui,下载并高效使用这些模型,提供本地及网络接口支持。所支持的量化方法包括GGML_TYPE_Q4_K,提供质量与性能的平衡。
Halu-8B-Llama3-v0.35-GGUF - Halu-8B-Llama3-v0.35量化版本选择指南,助力性能优化
GithubHalu-8B-Llama3-v0.35Huggingfacehuggingface-clitransformers开源项目文本生成模型量化
项目Halu-8B-Llama3-v0.35提供多种量化版本,通过不同的量化类型优化模型性能,以适应各类RAM和VRAM的需求。可选择K-quants或I-quants,满足特定场景下的性能需求。高质量的I-quants适用于CPU和Apple Metal,性能优于传统K-quants但不兼容Vulcan,并附有详细的性能图表和量化指南,帮助选择适合的量化版本。
Gemma-2-9B-It-SPPO-Iter3-GGUF - 探讨Gemma-2-9B模型量化版本的性能与存储选择
Gemma-2-9B-It-SPPO-Iter3GithubHuggingface下载指南开源项目数据集模型量化高性能
该项目利用llama.cpp进行量化,推出多种Gemma-2-9B-It-SPPO-Iter3模型版本以适应不同的内存及性能需求。用户可按RAM和VRAM状况选择合适的量化格式,如高质量的Q6_K_L或经济型IQ2_M。量化文件大小介于4GB至37GB之间,且可通过Huggingface下载。根据VRAM选择合适模型尺寸,有助于优化运行速度,并提供多样化选项以满足不同性能与存储需求。
ta - Python实现43种金融技术分析指标
GithubPython开源项目技术分析指标数据处理金融
TA是一个基于Pandas和Numpy的Python技术分析库,专门用于金融时间序列数据的特征工程。该库实现了43种技术指标,涵盖成交量、波动性、趋势和动量等方面,包括移动平均线、布林带、MACD等。TA为金融数据分析和量化交易策略开发提供了全面的工具支持。
Qwen2-7B-Instruct-GGUF - 高效量化AI模型 多平台支持 便捷本地部署
GGUFGPU加速GithubHuggingfaceQwen2-7B-Instruct开源项目文本生成模型模型量化
Qwen2-7B-Instruct-GGUF是Qwen2-7B-Instruct模型的GGUF格式量化版本。该模型支持2至8比特量化,可在llama.cpp、LM Studio等多个平台上本地部署。GGUF格式具有高效性能和广泛兼容性,便于在个人设备上进行AI文本生成。该项目为用户提供了多种比特率的量化选项,以适应不同的硬件环境和性能需求。
Reflection-Llama-3.1-70B-GGUF - Llama-3.1-70B模型的GGUF量化版本集合
GPU内存优化GithubHuggingfaceLlama人工智能推理开源项目模型模型量化深度学习
Reflection-Llama-3.1-70B模型的GGUF量化集合,包含从74.98GB到22.24GB的多个版本。采用K-quants和I-quants量化技术,并对embed和output权重进行了特别处理。项目提供了详细的版本特性说明、安装指南以及基于不同硬件配置的选型建议。
graphsignal-python - Graphsignal为AI应用提供全面观测与性能优化
AI观测GithubGraphsignal应用监控开源项目性能分析错误追踪
Graphsignal是一个面向AI代理和LLM应用的观测平台,提供AI上下文追踪、交互评分、延迟分析、成本监控和异常检测等功能。该平台支持OpenAI和LangChain等主流框架,性能开销低,可帮助开发者轻松监控和分析AI应用,提升整体运行效果。通过Graphsignal,开发团队能够更好地了解AI应用的运行状况,及时发现并解决潜在问题。该平台采用自动化集成方式,便于开发者快速部署,实现AI应用的实时监控和性能优化。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号