Project Icon

acme

强化学习的高效构件库,提供灵活基线

Acme是一个提供简洁、高效和易读参考实现的强化学习构件库。此库不仅为稳固的基线提供灵活性,还能作为新研究的起点。支持多种规模的代理(单流与分布式),特别适合研究人员使用。项目内含详细的入门指南、代码示例和完整文档,确保用户能够快速上手并理解设计决策。

accel-brain-code - 深度学习和机器学习算法库集合
Github开源项目强化学习机器学习深度学习生成对抗网络自动编码器
accel-brain-code是一个开源项目,集成了多个深度学习和机器学习算法库。它包括自动编码器、生成对抗网络、深度强化学习等模块,旨在通过概念验证和研发创建原型。该项目探索了AI民主化后的机器学习研发可能性,为快速开发复杂AI系统提供了基础。其功能涵盖自动摘要、强化学习、生成对抗网络等多个领域。
AgileRL - 革新强化学习的高效开发框架
AgileRLGithub开源项目强化学习机器学习超参数优化进化算法
AgileRL是一个创新的深度强化学习库,专注于提升强化学习的开发效率。通过引入RLOps概念,该库显著缩短了模型训练和超参数优化的时间。AgileRL采用进化超参数优化技术,自动找到最优超参数,减少了大量训练运行。它支持多种先进的可进化算法,包括单智能体、多智能体、离线学习和上下文多臂赌博机,并具备分布式训练能力。相比传统方法,AgileRL在超参数优化速度上实现了10倍的提升。
autonomous-learning-library - PyTorch深度强化学习库助力智能代理开发
GithubPyTorch开源项目智能体深度强化学习算法实现自主学习库
autonomous-learning-library是基于PyTorch的深度强化学习库,为快速构建和评估智能代理提供丰富组件。库中包含灵活的函数近似API、多种内存缓冲区和环境接口,并实现了A2C、DQN、PPO等主流算法。支持Atari、经典控制和机器人仿真等环境,集成Tensorboard等工具便于实验监控。该库特别强调模块化设计,便于研究人员快速实现和测试新想法。同时提供完整文档和示例项目,降低了强化学习研究的入门门槛。
atomic_agents - 模块化、可扩展的AI代理框架
Atomic AgentsGithub使用示例开源项目数据验证框架模块化
Atomic Agents框架专为模块化、可扩展和易用而设计,提供一套可以组合的工具和代理来创建强大的应用程序。框架基于Instructor构建,并利用Pydantic进行数据验证和序列化。详细的快速入门指南和文档可帮助用户快速入门,支持OpenAI、Cohere、Anthropic等多种模型。项目采用MIT许可证,并欢迎社区贡献和改进建议。
rl-baselines3-zoo - Stable Baselines3 强化学习代理的训练框架,包括超参数优化和预训练代理
GithubRL Baselines3 ZooStable Baselines3开源项目强化学习训练框架超参数调整
RL Baselines3 Zoo提供一个灵活的训练框架支持众多增强学习算法和环境。此框架便于进行算法基准测试、调优以及AI模型的训练和评估。已集成200多个预训练智能体,并配备全面的文档和安装指南,适合科研和开发使用。
awesome-deep-rl - 全面的深度强化学习资源库
Github基准测试开源库开源项目深度强化学习环境模拟竞赛
该项目汇集了深度强化学习领域的各类资源,包括主流库、基准测试结果、训练环境、竞赛信息和发展时间线。研究人员和开发者可以在此快速了解该领域的全貌,获取有价值的工具和信息。作为一个综合性资源库,它为深度强化学习的学习和研究提供了便利。
code-act - 使用可执行代码统一LLM代理机制
CodeActCodeActAgentGithubKubernetesLLMPython开源项目
CodeAct通过可执行代码统一了LLM代理的行动空间,并利用集成的Python解释器实现动态行为调整。相比文本和JSON,CodeAct成功率提高了20%。项目包含详细数据集和模型说明,并支持Kubernetes部署,显著提升在非专业任务中的性能表现。
AcmeTrace - 大规模语言模型工作负载数据集
AI实验室Acme TraceGithub工作负载开源项目数据集资源利用
AcmeTrace是一个来自上海人工智能实验室的大规模语言模型工作负载数据集,涵盖2023年3月至8月期间的数据。该数据集包含880,740个作业记录,其中470,497个为GPU作业,来自两个独立的GPU集群。这些数据为研究人员提供了分析大规模语言模型在数据中心开发特征的宝贵资源,支持相关学术研究。
stable-baselines3 - 增强型PyTorch强化学习算法,实现可靠性与自定义支持
GithubPyTorchRL算法Stable Baselines3开源项目强化学习稳定基线
实现可靠的PyTorch强化学习算法,方便研究和工业用户复制和优化新思路。支持自定义环境与策略,提供统一接口,适合项目开发和性能对比。涵盖A2C、PPO、DQN等算法,包含迁移指南和在线文档,适用于有强化学习基础的用户。
xuance - 多框架支持的深度强化学习算法库
GithubXuanCe多框架支持开源库开源项目深度强化学习算法实现
XuanCe是一个开源的深度强化学习算法库,支持PyTorch、TensorFlow和MindSpore等多种框架。它兼容单智能体和多智能体任务,提供丰富的算法实现。XuanCe设计模块化,易于学习和使用,运行速度快。支持经典控制、Box2D、MuJoCo、Atari等多种环境,为研究和开发提供全面的深度强化学习工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号